Spelling suggestions: "subject:"otimização dde redes"" "subject:"otimização dee redes""
11 |
Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redesLourenço, Wilson Da Silva 26 February 2015 (has links)
Submitted by Nadir Basilio (nadirsb@uninove.br) on 2015-07-17T15:18:49Z
No. of bitstreams: 1
Wilson da Silva Lourenco.pdf: 1321079 bytes, checksum: ea090b0df77d0c04ef1dde30e7b41558 (MD5) / Made available in DSpace on 2015-07-17T15:18:49Z (GMT). No. of bitstreams: 1
Wilson da Silva Lourenco.pdf: 1321079 bytes, checksum: ea090b0df77d0c04ef1dde30e7b41558 (MD5)
Previous issue date: 2015-02-26 / The network optimization problems (NOP) are common to several areas such as engineering, transport and telecommunications, and have been objects of intense research and studies. Among the classical NOP are the problems of Shortest Path (SPP), Max Flow (MFP) and Traveling Salesman (TSP), which are usually studied in undergraduate and graduate courses such as Industrial Engineering, Computer Science, Information Systems and Logistics, with the use of resources such as chalk and blackboard that hinder the teacher's work, in the sense of showing the functioning of algorithms that solve these problems while maintaining students' motivation for learning. In this context, it is proposed in this research, a computational tool, characterized as a Learning Object (OA) and called TASNOP - Teaching Algorithms for Solving Network Optimization Problems, whose purpose is to contribute to students' understanding about concepts from NOP and, mainly, the functioning of algorithms A*, Greedy Search and Dijkstra used for resolution of SPP, Ford-Fulkerson employed in the resolution of MFP and the Nearest Neighbor to solve the TSP. It is important to highlight that the proposed OA can be accessed through web and also employed in distance learning environments (DLE). Experiments conducted in 2014 with 129 students of Computer Science, from which 51 performed an exercise using the TASNOP and 78 without this tool, confirm that students who used the TASNOP performed better in solving the proposed exercise, corroborating the idea that the OA helped to improve their understanding about the algorithms discussed in this research. In addition, the 51 students who employed the TASNOP answered a questionnaire about it use and, the answers indicated that the TASNOP shows a potential to be used as a learning support tool. / Os problemas de otimização em redes (POR) são comuns a diversas áreas como engenharia, transportes e telecomunicações, e têm sido objetos de intensas pesquisas e estudos. Entre os POR clássicos estão os problemas de Caminho Mínimo (PCM), Fluxo Máximo (PFM) e Caixeiro Viajante (PCV), os quais normalmente são estudados em cursos de graduação e pós-graduação tais como Engenharia de Produção, Ciência da Computação, Sistemas de Informação e Logística, com a utilização de recursos como giz e lousa, o que dificulta o trabalho do professor, no sentido de mostrar o funcionamento dos algoritmos que solucionam esses problemas, mantendo a motivação dos alunos para a aprendizagem. Neste contexto, propõe-se nesta pesquisa, uma ferramenta computacional, caracterizada como um Objeto de Aprendizagem (OA) denominado TASNOP - Teaching Algorithms for Solving Network Optimization Problems, cuja finalidade é contribuir para compreensão dos alunos sobre conceitos de POR e, principalmente, sobre o funcionamento dos algoritmos A*, Busca Gulosa, e Dijkstra, usados para resolução do PCM, Ford-Fulkerson empregado na resolução de PFM e o algoritmo Vizinho mais Próximo para resolução do PCV. É importante ressaltar que o OA proposto pode ser acessado via web e, inclusive, ser acoplado em ambientes de ensino a distância (EaD). Experimentos realizados no ano de 2014 envolvendo 129 alunos do curso de Ciência da Computação, dos quais 51 resolveram um exercício com o uso do TASNOP e 78 sem o seu uso, permitiram verificar que os alunos que utilizaram o TASNOP obtiveram melhor desempenho na resolução do exercício proposto, corroborando a ideia de que o OA contribuiu para melhorar suas compreensões acerca dos algoritmos abordados nesta pesquisa. Em adição, os 51 alunos que usaram o TASNOP responderam a um questionário sobre o seu uso e, com base nessas respostas, ficou evidente o potencial do TASNOP como uma ferramenta de apoio ao ensino.
|
12 |
Redes complexas para classificação de dados via conformidade de padrão, caracterização de importância e otimização estrutural / Data classification in complex networks via pattern conformation, data importance and structural optimizationCarneiro, Murillo Guimarães 08 November 2016 (has links)
A classificação é uma tarefa do aprendizado de máquina e mineração de dados, na qual um classificador é treinado sobre um conjunto de dados rotulados de forma que as classes de novos itens de dados possam ser preditas. Tradicionalmente, técnicas de classificação trabalham por definir fronteiras de decisão no espaço de dados considerando os atributos físicos do conjunto de treinamento e uma nova instância é classificada verificando sua posição relativa a tais fronteiras. Essa maneira de realizar a classificação, essencialmente baseada nos atributos físicos dos dados, impossibilita que as técnicas tradicionais sejam capazes de capturar relações semânticas existentes entre os dados, como, por exemplo, a formação de padrão. Por outro lado, o uso de redes complexas tem se apresentado como um caminho promissor para capturar relações espaciais, topológicas e funcionais dos dados, uma vez que a abstração da rede unifica a estrutura, a dinâmica e as funções do sistema representado. Dessa forma, o principal objetivo desta tese é o desenvolvimento de métodos e heurísticas baseadas em teorias de redes complexas para a classificação de dados. As principais contribuições envolvem os conceitos de conformidade de padrão, caracterização de importância e otimização estrutural de redes. Para a conformidade de padrão, onde medidas de redes complexas são usadas para estimar a concordância de um item de teste com a formação de padrão dos dados, é apresentada uma técnica híbrida simples pela qual associações físicas e topológicas são produzidas a partir da mesma rede. Para a caracterização de importância, é apresentada uma técnica que considera a importância individual dos itens de dado para determinar o rótulo de um item de teste. O conceito de importância aqui é definido em termos do PageRank, algoritmo usado na engine de busca do Google para definir a importância de páginas da web. Para a otimização estrutural de redes, é apresentado um framework bioinspirado capaz de construir a rede enquanto otimiza uma função de qualidade orientada à tarefa, como, por exemplo, classificação, redução de dimensionalidade, etc. A última investigação apresentada no documento explora a representação baseada em grafo e sua habilidade para detectar classes de distribuições arbitrárias na tarefa de difusão de papéis semânticos. Vários experimentos em bases de dados artificiais e reais, além de comparações com técnicas bastante usadas na literatura, são fornecidos em todas as investigações. Em suma, os resultados obtidos demonstram que as vantagens e novos conceitos propiciados pelo uso de redes se configuram em contribuições relevantes para as áreas de classificação, sistemas de aprendizado e redes complexas. / Data classification is a machine learning and data mining task in which a classifier is trained over a set of labeled data instances in such a way that the labels of new instances can be predicted. Traditionally, classification techniques define decision boundaries in the data space according to the physical features of a training set and a new data item is classified by verifying its relative position to the boundaries. Such kind of classification, which is only based on the physical attributes of the data, makes traditional techniques unable to detect semantic relationship existing among the data such as the pattern formation, for instance. On the other hand, recent works have shown the use of complex networks is a promissing way to capture spatial, topological and functional relationships of the data, as the network representation unifies structure, dynamic and functions of the networked system. In this thesis, the main objective is the development of methods and heuristics based on complex networks for data classification. The main contributions comprise the concepts of pattern conformation, data importance and network structural optimization. For pattern conformation, in which complex networks are employed to estimate the membership of a test item according to the data formation pattern, we present, in this thesis, a simple hybrid technique where physical and topological associations are produced from the same network. For data importance, we present a technique which considers the individual importance of the data items in order to determine the label of a given test item. The concept of importance here is derived from PageRank formulation, the ranking measure behind the Googles search engine used to calculate the importance of webpages. For network structural optimization, we present a bioinspired framework, which is able to build up the network while optimizing a task-oriented quality function such as classification, dimension reduction, etc. The last investigation presented in this thesis exploits the graph representation and its hability to detect classes of arbitrary distributions for the task of semantic role diffusion. In all investigations, a wide range of experiments in artificial and real-world data sets, and many comparisons with well-known and widely used techniques are also presented. In summary, the experimental results reveal that the advantages and new concepts provided by the use of networks represent relevant contributions to the areas of classification, learning systems and complex networks.
|
13 |
O papel da distância em projetos topológicos de redes de distribuição elétrica / The role of distances in topological design of electrical distribution networksSilva, Paulo Wagner Lopes da 20 May 2015 (has links)
This dissertation investigates in which conditions the optimal configuration of an electric power network is a minimum length spanning tree, and in which conditions it is shortest path tree configuration. For this purpose the dissertation, it applies computational optimization mathematical models of an optimal local access network design problem. The focus of the study is the 13.8 kV spacer cable primary radial networks. Applied models seek for the balance betweenfixedcostsandvariablecosts.Savedvaluesfromanoptimalnetworkcouldbeapplied to increase the range of the network and people reached as well. The bibliographic research is compound by three parts: graph theory, local access network optimization models, and distribution network costs. Research methodology includes the choice of the distribution system, determination of fixed and variable costs, choice and implementation of the local access network optimization models, tests in hypothetical and realistic systems by using the CPLEX solver, analysis of the resulting configuration, and construction of graphics to facilitate the results evaluation. It was found that the relationship between fixed costs and variable costs influences the optimal configuration of the distribution network in such a way that a low value of the quotient between fixed costs and variable costs contributes to a shortest path tree. On the other hand, a high quotient between fixed costs and variable costs contributes to a minimum length spanning tree configuration. However, others parameters must be considered to determine the network configuration such as extension, arches demand and quantity of arches. / O presente trabalho visa investigar sob quais condições a configuração ótima de uma rede de distribuição elétrica é uma árvore geradora mínima (AGM) e sob quais é uma árvore de caminhos mínimos (ACM). Utilizando, para isso, modelos matemáticos computacionais de otimização topológica de redes de utilidade pública. As redes de distribuição estudadas foram do tipo aérea radial primária protegida (ARPP) com nível de tensão em 13,8 kV. Os modelos utilizados prezam pelo equilíbrio entre o custo de investimento inicial (fixo) e os custos decorrentes da transferência de energia elétrica (variável). Os valores economizados através de uma configuração ótima da rede podem ser convertidos em investimentos para aumentar o número de pessoas com acesso aos recursos energéticos com eficiência e qualidade. A revisão bibliográfica foi dividida em três partes: teoria dos grafos, modelos de otimização de redes de acesso local e custos de redes de distribuição. A metodologia utilizada compreendeu as seguintes etapas: escolha do tipo de sistema de distribuição, determinação dos custos fixo e variável, escolha e implementação (GAMS) dos modelos, testes com exemplos de redes usando o solver CPLEX, análise das configurações resultantes e elaboração de gráficos para facilitar a avaliação dos resultados. Os resultados mostraram que a relação entre o custo fixo β e o custo variável γ exerce influência determinante na configuração ótima de uma rede de distribuição ARPP. Um valor baixo de β/γ, favorece a ACM. Já valores elevados de β/γ, conduzem a solução para uma AGM. No entanto, essa relação não é o único fator que determina a configuração da rede, outros parâmetros como extensão, demanda dos nós e quantidade de possíveis arcos influenciam de forma significativa na solução apresentada.
|
14 |
Redes complexas para classificação de dados via conformidade de padrão, caracterização de importância e otimização estrutural / Data classification in complex networks via pattern conformation, data importance and structural optimizationMurillo Guimarães Carneiro 08 November 2016 (has links)
A classificação é uma tarefa do aprendizado de máquina e mineração de dados, na qual um classificador é treinado sobre um conjunto de dados rotulados de forma que as classes de novos itens de dados possam ser preditas. Tradicionalmente, técnicas de classificação trabalham por definir fronteiras de decisão no espaço de dados considerando os atributos físicos do conjunto de treinamento e uma nova instância é classificada verificando sua posição relativa a tais fronteiras. Essa maneira de realizar a classificação, essencialmente baseada nos atributos físicos dos dados, impossibilita que as técnicas tradicionais sejam capazes de capturar relações semânticas existentes entre os dados, como, por exemplo, a formação de padrão. Por outro lado, o uso de redes complexas tem se apresentado como um caminho promissor para capturar relações espaciais, topológicas e funcionais dos dados, uma vez que a abstração da rede unifica a estrutura, a dinâmica e as funções do sistema representado. Dessa forma, o principal objetivo desta tese é o desenvolvimento de métodos e heurísticas baseadas em teorias de redes complexas para a classificação de dados. As principais contribuições envolvem os conceitos de conformidade de padrão, caracterização de importância e otimização estrutural de redes. Para a conformidade de padrão, onde medidas de redes complexas são usadas para estimar a concordância de um item de teste com a formação de padrão dos dados, é apresentada uma técnica híbrida simples pela qual associações físicas e topológicas são produzidas a partir da mesma rede. Para a caracterização de importância, é apresentada uma técnica que considera a importância individual dos itens de dado para determinar o rótulo de um item de teste. O conceito de importância aqui é definido em termos do PageRank, algoritmo usado na engine de busca do Google para definir a importância de páginas da web. Para a otimização estrutural de redes, é apresentado um framework bioinspirado capaz de construir a rede enquanto otimiza uma função de qualidade orientada à tarefa, como, por exemplo, classificação, redução de dimensionalidade, etc. A última investigação apresentada no documento explora a representação baseada em grafo e sua habilidade para detectar classes de distribuições arbitrárias na tarefa de difusão de papéis semânticos. Vários experimentos em bases de dados artificiais e reais, além de comparações com técnicas bastante usadas na literatura, são fornecidos em todas as investigações. Em suma, os resultados obtidos demonstram que as vantagens e novos conceitos propiciados pelo uso de redes se configuram em contribuições relevantes para as áreas de classificação, sistemas de aprendizado e redes complexas. / Data classification is a machine learning and data mining task in which a classifier is trained over a set of labeled data instances in such a way that the labels of new instances can be predicted. Traditionally, classification techniques define decision boundaries in the data space according to the physical features of a training set and a new data item is classified by verifying its relative position to the boundaries. Such kind of classification, which is only based on the physical attributes of the data, makes traditional techniques unable to detect semantic relationship existing among the data such as the pattern formation, for instance. On the other hand, recent works have shown the use of complex networks is a promissing way to capture spatial, topological and functional relationships of the data, as the network representation unifies structure, dynamic and functions of the networked system. In this thesis, the main objective is the development of methods and heuristics based on complex networks for data classification. The main contributions comprise the concepts of pattern conformation, data importance and network structural optimization. For pattern conformation, in which complex networks are employed to estimate the membership of a test item according to the data formation pattern, we present, in this thesis, a simple hybrid technique where physical and topological associations are produced from the same network. For data importance, we present a technique which considers the individual importance of the data items in order to determine the label of a given test item. The concept of importance here is derived from PageRank formulation, the ranking measure behind the Googles search engine used to calculate the importance of webpages. For network structural optimization, we present a bioinspired framework, which is able to build up the network while optimizing a task-oriented quality function such as classification, dimension reduction, etc. The last investigation presented in this thesis exploits the graph representation and its hability to detect classes of arbitrary distributions for the task of semantic role diffusion. In all investigations, a wide range of experiments in artificial and real-world data sets, and many comparisons with well-known and widely used techniques are also presented. In summary, the experimental results reveal that the advantages and new concepts provided by the use of networks represent relevant contributions to the areas of classification, learning systems and complex networks.
|
Page generated in 0.055 seconds