• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soil characterization, classification, and biomass accumulation in the Otter Creek Wilderness

Schnably, Jamie. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vii, 137 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 71-76).
2

Sulfate sorption of acidified forest soils in the Otter Creek Wilderness area

Bryson, Autumn Leah. January 2006 (has links)
Thesis (M.S.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains vi, 36 p. : ill. (some col.), col. maps. Includes abstract. Includes bibliographical references (p. 31-36).
3

Polycyclic Aromatic Hydrocarbon Characterization in Otter Creek, Northwest Ohio

Bobak, Deanna M. 14 June 2010 (has links)
No description available.
4

Optimizing land acquisition-conversion projects for water quality protection and enhancement using biological integrity endpoints

Wente, Stephen P. January 1996 (has links)
Biological monitoring and land use data analysis were performed for a small (79,800 acre) watershed in west-central Indiana. A model was developed between Hilsenhoff biotic index and percentage of water (volume) draining through forestland at each sample site (R2.92, P < .002). This water volume model was found to explain more of the variation in biological integrity than USEPA and Ohio EPA habitat assessment methods, as well as, a land use model based upon percentage watershed surface area. Based on this water volume model, maps were created depicting regions within the watershed that had the greatest potential to damage water quality. Land acquisition/conversion projects based upon these maps should improve biological integrity/water quality more efficiently (requiring less land acquisition/conversion, and therefore lowering project costs, while increasing water quality benefits). / Department of Biology

Page generated in 0.0596 seconds