Spelling suggestions: "subject:"tut off thermal equilibrium"" "subject:"tut oof thermal equilibrium""
1 |
Leptogênese e mecanismo de See-Saw de tipo I na teoria quântica de campos fora do equilíbrio térmico / Leptogenesis and Type I See-Saw Mechanism in the Out-of-equilibrium Quantum Field TheoryGonzalez, Yuber Ferney Perez 04 April 2013 (has links)
Um dos problemas mais importantes que precisa ser resolvido, tanto pela física de partículas como pela cosmologia, é a existência de assimetria bariônica. Entre os cenários mais atrativos para a geração dinâmica da assimetria bariônica (Bariogênese) encontra- se a denominada Leptogênese. Nesse cenário, cria-se uma assimetria leptônica que será convertida em assimetria bariônica por processos não perturbativos mediados por sphalerons. Na realização mais simples da Leptogênese, que será estudada nesta dissertação, neutrinos pesados de mão direita, produzidos termicamente, decaem violando CP, gerando um assimetria leptônica nesses decaimentos. O principal atrativo deste cenário é que conecta duas escalas aparentemente diferentes: a escala da geração de assimetria leptônica e a escala das massas e oscilações dos neutrinos ativos mediante o mecanismo de See-Saw. O estudo usual da Leptogênese utiliza equações de Boltzmann para determinar a evolução temporal da assimetria. Porém, a equação de Boltzmann é uma equação semiclássica, dado que envolve, por um lado, uma função clássica no espaço de fases, a função de distribuição, mas, por outro, os termos de colisão envolvem quantidades obtidas na teoria quântica de campos à temperatura nula. Em particular, a formulação de Boltzmann não permite descrever fenômenos quânticos como oscilações coerentes e efeitos de decoêrencia e interferência. Uma descrição quântica completa da evolução da assimetria leptônica na leptogênese deve, de fato, ser obtida no contexto da teoria quântica de campos fora do equilíbrio térmico. O formalismo de Schwinger-Keldysh permite realizar isso. Nesta dissertação descreveremos a leptogênese no formalismo de Schwinger-Keldysh para o caso em que são adicionados ao espectro de partículas do Modelo Padrão três neutrinos de mão direita, sem fazer qualquer suposição sobre a hierarquia de massas. / One of the most important problems that is needed to solve by the Elementary Particle Physics as well as by the Cosmology is the existence of baryonic asymmetry. Among the most attractive scenarios of dynamic generation of baryonic asymmetry (Baryogenesis) is the so-called Leptogenesis. In that scenario, a leptonic asymmetry is treated in such a way that it will be converted in baryonic asymmetry by non-perturbative processes mediated by sphalerons. In the simplest realization of Leptogenesis, that will be studied in this disertation, heavy right-handed neutrinos, produzed thermally, decay violating CP generating a leptonic asymmetry in these decays. The principal attractive of this scenario is that it connects two apparently different scales, the scale of leptonic asymmetry generation and the scale of masses and oscillations of the active neutrinos through the See-Saw mechanism. The usual study of the leptogenesis uses Boltzmann equations in order to determine the temporal evolution of the asymmetry. However, the Boltzmann equation is a semiclassical equations, since, on one side, it is formulated for a classical function in phases space, the distribution function, but, on the other hand, the collision term involves quantities obtained in the Quantum Field Theory at zero temperature. In particular, Boltzmann formulation does not allow to describe quantum phenomena such coherent oscillations and effects of decoherence and interference. Indeed, a proper quantum description of the evolution of the leptonic asymmetry must be obtained in the context of the Non-Equilibrium Quantum Field Theory. The Schwinger-Keldysh formalism allows to perform this. In this dissertation, leptogenesis is described using the Schwinger-Keldysh formalism for the case in which there are three right-handed neutrinos without a definite mass hierarchy.
|
2 |
Leptogênese e mecanismo de See-Saw de tipo I na teoria quântica de campos fora do equilíbrio térmico / Leptogenesis and Type I See-Saw Mechanism in the Out-of-equilibrium Quantum Field TheoryYuber Ferney Perez Gonzalez 04 April 2013 (has links)
Um dos problemas mais importantes que precisa ser resolvido, tanto pela física de partículas como pela cosmologia, é a existência de assimetria bariônica. Entre os cenários mais atrativos para a geração dinâmica da assimetria bariônica (Bariogênese) encontra- se a denominada Leptogênese. Nesse cenário, cria-se uma assimetria leptônica que será convertida em assimetria bariônica por processos não perturbativos mediados por sphalerons. Na realização mais simples da Leptogênese, que será estudada nesta dissertação, neutrinos pesados de mão direita, produzidos termicamente, decaem violando CP, gerando um assimetria leptônica nesses decaimentos. O principal atrativo deste cenário é que conecta duas escalas aparentemente diferentes: a escala da geração de assimetria leptônica e a escala das massas e oscilações dos neutrinos ativos mediante o mecanismo de See-Saw. O estudo usual da Leptogênese utiliza equações de Boltzmann para determinar a evolução temporal da assimetria. Porém, a equação de Boltzmann é uma equação semiclássica, dado que envolve, por um lado, uma função clássica no espaço de fases, a função de distribuição, mas, por outro, os termos de colisão envolvem quantidades obtidas na teoria quântica de campos à temperatura nula. Em particular, a formulação de Boltzmann não permite descrever fenômenos quânticos como oscilações coerentes e efeitos de decoêrencia e interferência. Uma descrição quântica completa da evolução da assimetria leptônica na leptogênese deve, de fato, ser obtida no contexto da teoria quântica de campos fora do equilíbrio térmico. O formalismo de Schwinger-Keldysh permite realizar isso. Nesta dissertação descreveremos a leptogênese no formalismo de Schwinger-Keldysh para o caso em que são adicionados ao espectro de partículas do Modelo Padrão três neutrinos de mão direita, sem fazer qualquer suposição sobre a hierarquia de massas. / One of the most important problems that is needed to solve by the Elementary Particle Physics as well as by the Cosmology is the existence of baryonic asymmetry. Among the most attractive scenarios of dynamic generation of baryonic asymmetry (Baryogenesis) is the so-called Leptogenesis. In that scenario, a leptonic asymmetry is treated in such a way that it will be converted in baryonic asymmetry by non-perturbative processes mediated by sphalerons. In the simplest realization of Leptogenesis, that will be studied in this disertation, heavy right-handed neutrinos, produzed thermally, decay violating CP generating a leptonic asymmetry in these decays. The principal attractive of this scenario is that it connects two apparently different scales, the scale of leptonic asymmetry generation and the scale of masses and oscillations of the active neutrinos through the See-Saw mechanism. The usual study of the leptogenesis uses Boltzmann equations in order to determine the temporal evolution of the asymmetry. However, the Boltzmann equation is a semiclassical equations, since, on one side, it is formulated for a classical function in phases space, the distribution function, but, on the other hand, the collision term involves quantities obtained in the Quantum Field Theory at zero temperature. In particular, Boltzmann formulation does not allow to describe quantum phenomena such coherent oscillations and effects of decoherence and interference. Indeed, a proper quantum description of the evolution of the leptonic asymmetry must be obtained in the context of the Non-Equilibrium Quantum Field Theory. The Schwinger-Keldysh formalism allows to perform this. In this dissertation, leptogenesis is described using the Schwinger-Keldysh formalism for the case in which there are three right-handed neutrinos without a definite mass hierarchy.
|
3 |
Energy management at the quantum scale : from thermal machines to energy transport / Manipulation d'énergie à l'échelle quantique : des machines thermiques au transport d'énergieDoyeux, Pierre 20 November 2017 (has links)
Cette thèse traite de la manipulation de l'énergie dans trois systèmes quantiques ouverts différents dans la limite de couplage faible système-environnement, et leurs dynamiques respectives sont décrites par une équation maîtresse quantique markovienne. Dans le premier chapitre, le calcul d'une telle équation est réalisé pour un système particulier, et diverses notions de thermodynamique quantique sont introduites. Pour le premier système physique, on analyse le transport d'énergie le long de chaînes atomiques (entre 2 et 7 atomes) soumises à un rayonnement de corps noir proche de la température ambiante. Il est montré que l'efficacité du transport peut atteindre des valeurs remarquables, surpassant 100% et atteignant jusqu'à 1400% dans certaines configurations. De plus, lorsque l'efficacité est amplifiée, la portée du transport est également considérablement augmentée. Le chapitre suivante traite aussi du transport d'énergie dans des chaînes atomiques. Le système quantique est placé à l'interface d'un isolant topologique photonique (ITP), qui supporte un plasmon polariton de surface (PPS) insensible à la réflexion. Le PPS se propage le long de la chaîne atomique et assiste le transport d'énergie. La comparaison est faite entre PPSs réciproque et unidirectionnel en termes d'efficacité du transport, et il est démontré que ce dernier produit une meilleure efficacité, de plus d'un ordre de grandeur. De surcroît, divers aspects pratiques dus aux propriétés des ITPs sont mis en avant, notamment la robustesse du transport d'énergie en présence de défauts sur le parcours du PPS. Enfin, un système quantique immergé dans un champ électromagnétique hors équilibre thermique est étudié. Il est composé d'un système à trois niveaux d'énergie, jouant le rôle de machine thermique quantique à absorption, ainsi que de N atomes à deux niveaux ("qubits") qui sont affectés par l'action de la machine. Il est montré que la machine est capable de délivrer des tâches thermiques d'intensité significative sur les qubits, y compris lorsque leur nombre augmente. De plus, il est mis en évidence qu'en raison d'interactions qubit-qubit, les tâches réalisées par la machine sont distribuées parmi l'ensemble du système des qubits en interaction, de sorte que dans certains cas, même les qubits complètement découplés de la machine subissent une modification de température considérable. Ce mécanisme de distribution des tâches est analysé à travers les corrélations entre différentes partitions du système quantique. Par ailleurs, le contrôle des tâches thermiques est également discuté. / This thesis deals with energy management in open quantum systems. Three different systems are under study in the limit of weak system-environment coupling, and their dynamics is described by Markovian quantum master equations. In the first chapter, the complete derivation of such equation is performed in a specific case, and several notions of quantum thermodynamics are introduced. In the first system, energy transport is investigated along atomic chains (between 2 and 7 atoms) embedded in blackbody radiation around room temperature. It is shown that the transport efficiency can reach remarkable values, exceeding 100% and reaching 1400% in some configurations. Moreover, when the efficiency is amplified, the transport range is also considerably increased. The following chapter also deals with energy transport in atomic chains. The quantum system is located at the interface of a photonic topological insulator (PTI), supporting a unidirectional surface-plasmon-polariton (SPP) immune to backscattering. The SPP propagates along the chain and assists energy transport. Comparison is made between reciprocal and unidirectional SPPs in terms of transport efficiency, and it is shown that the latter can yield an efficiency larger by one order of magnitude. In addition, several practical aspects stemming from PTIs are highlighted, including the robustness of energy transport in the presence of defects on the SPP path. In the last chapter, a quantum system embedded in an out-of-thermal-equilibrium electromagnetic field is investigated. It is composed of a three-level atom playing the role of an absorption quantum thermal machine, as well as N two-level atoms ('qubits'), with N=1,...,6, which are the target bodies. It is demonstrated that the machine is able to perform significant thermal tasks on the qubits, even when their number is increased. Moreover, it is pointed out that due to qubit-qubit interactions, the tasks delivered by the machine are distributed throughout the system of interacting qubits, such that in some cases the temperature of the qubits which are completely decoupled from the machine can still be considerably affected by it. This task-distribution mechanism is investigated by means of the correlations between different subparts of the system. In addition, the tuning of thermal tasks is discussed.
|
Page generated in 0.0928 seconds