• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System Identification of a Nonlinear Flight Dynamics Model for a Small, Fixed-Wing UAV

Simmons, Benjamin Mason 16 May 2018 (has links)
This thesis describes the development of a nonlinear flight dynamics model for a small, fixed-wing unmanned aerial vehicle (UAV). Models developed for UAVs can be used for many applications including risk analysis, controls system design and flight simulators. Several challenges exist for system identification of small, low-cost aircraft including an increased sensitivity to atmospheric disturbances and decreased data quality from a cost-appropriate instrumentation system. These challenges result in difficulties in development of the model structure and parameter estimation. The small size may also limit the scope of flight test experiments and the consequent information content of the data from which the model is developed. Methods are presented to improve the accuracy of system identification which include data selection, data conditioning, incorporation of information from computational aerodynamics and synthesis of information from different flight test maneuvers. The final parameter estimation and uncertainty analysis was developed from the time domain formulation of the output-error method using the fully nonlinear aircraft equations of motion and a nonlinear aerodynamic model structure. The methods discussed increased the accuracy of parameter estimates and lowered the uncertainty in estimates compared to standard procedures for parameter estimation from flight test data. The significant contributions of this thesis are a detailed explanation of the entire system identification process tailored to the needs of a small UAV and incorporation of unique procedures to enhance identification results. This work may be used as a guide and list of recommendations for future system identification efforts of small, low-cost, minimally instrumented, fixed-wing UAVs. / MS
2

Development of a System Identification Tool for Subscale Flight Testing

Arustei, Adrian January 2019 (has links)
Aircraft system identification has been widely used to this day in applications like control law design, building simulators or extending flight envelopes. It can also be utilized for determining flight-mechanical characteristics in the preliminary design phase of a flight vehicle. In this thesis, three common time-domain methods were implemented in MATLAB for determining the aerodynamic derivatives of a subscale aircraft. For parameter estimation, the equation-error method is quick, robust and can provide good parameter estimates on its own. The output-error method is computationally intensive but keeps account of the aircraft's evolution in time, being more suitable for fine-tuning predictive models. A new model structure is identified using multivariate orthogonal functions with a predicted squared error stopping criteria. This method is based on linear regression (equation-error). The code written is flexible and can also be used for other aircraft and with other aerodynamic models. Simulations are compared with experimental data from a previous flight test campaign for validation. In the future, this tool may help taking decisions in conceptual design after a prototype is tested.
3

Identifikace aerodynamických charakteristik atmosférického letadla z výsledků letových měření / Aerodynamic Characteristics Identification of Atmospheric Airplane from Flight Measurement Results

Zikmund, Pavel Unknown Date (has links)
The thesis deals with aerodynamic characteristics identification from flight measurement. The topic is part of flight mechanic – handling qualities. The first theoretic part consists of three identification methods description: Error equation method, Output error method and Filter error method. Mathematical model of an airplane is defined and restricted to the motion with 3 degree of freedom. There is also introduced simulation of flight measurement for identification software validation. Practical part is focused on experiment preparation, execution and evaluation. The airplane VUT 700 Specto had been chosen to carry out flight tests. The airplane was modified to the new electric powered VUT 700e Specto after first measurement flights with combustion engine. Data record from on-board measurement unit was completed by telemetric data from autopilot and remote control system. Flight tests were carried out in stabilised mode of autopilot in symmetric flight. The results were confronted with analytical analysis results and DATCOM+ software parameter estimation.
4

Identifikace aerodynamických charakteristik atmosférického letadla z výsledků letových měření / Aerodynamic Characteristics Identification of Atmospheric Airplane from Flight Measurement Results

Zikmund, Pavel January 2013 (has links)
The thesis deals with aerodynamic characteristics identification from flight measurement. The topic is part of flight mechanic – handling qualities. The first theoretic part consists of three identification methods description: Error equation method, Output error method and Filter error method. Mathematical model of an airplane is defined and restricted to the motion with 3 degree of freedom. There is also introduced simulation of flight measurement for identification software validation. Practical part is focused on experiment preparation, execution and evaluation. The airplane VUT 700 Specto had been chosen to carry out flight tests. The airplane was modified to the new electric powered VUT 700e Specto after first measurement flights with combustion engine. Data record from on-board measurement unit was completed by telemetric data from autopilot and remote control system. Flight tests were carried out in stabilised mode of autopilot in symmetric flight. The results were confronted with analytical analysis results and DATCOM+ software parameter estimation.
5

Odhad Letových Parametrů Malého Letounu / Light Airplane Flight Parameters Estimation

Dittrich, Petr Unknown Date (has links)
Tato práce je zaměřena na odhad letových parametrů malého letounu, konkrétně letounu Evektor SportStar RTC. Pro odhad letových parametrů jsou použity metody "Equation Error Method", "Output Error Method" a metody rekurzivních nejmenších čtverců. Práce je zaměřena na zkoumání charakteristik aerodynamických parametrů podélného pohybu a ověření, zda takto odhadnuté letové parametry odpovídají naměřeným datům a tudíž vytvářejí předpoklad pro realizaci dostatečně přesného modelu letadla. Odhadnuté letové parametry jsou dále porovnávány s a-priorními hodnotami získanými s využitím programů Tornado, AVL a softwarovéverze sbírky Datcom. Rozdíly mezi a-priorními hodnotami a odhadnutými letovými paramatery jsou porovnány s korekcemi publikovanými pro subsonické letové podmínky modelu letounu F-18 Hornet.

Page generated in 0.0343 seconds