• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and computer simulation of optimal active vibration control

Dhotre, Nitin Ratnakar 08 September 2005
<p>Methodologies for the analysis and computer simulations of active optimal vibration control of complex elastic structures are considered. The structures, generally represented by a large number of degrees of freedom (DOF), are to be controlled by a comparatively small number of actuators.</p><p>Various techniques presently available to solve the optimal control problems are briefly discussed. A Parametric optimization technique that is versatile enough to solve almost any type of optimization problems is found to give poor accuracy and is time consuming. More promising is the optimality equations approach, which is based on Pontryagins principle. Several new numerical procedures are developed using this approach. Most of the problems in this thesis are analysed in the modal space. Even complex structures can be approximated accurately in the modal space by using only few modes. Different techniques have been first applied to the cases where the number of modes to control was the same as the number of actuators (determined optimal control problems), then to cases in which the number of modes to control is larger than the number of actuators (overdetermined optimal control problems). </p><p>The determined optimal control problems can be solved by applying the Independent Modal Space Control (IMSC) approach. Such an approach is implemented in the Beam Analogy (BA) method that solves the problem numerically by applying the Finite Element Method (FEM). The BA, which uses the ANSYS program, is numerically very efficient. The effects of particular optimization parameters involved in BA are discussed in detail. Unsuccessful attempts have been made to modify this method in order to make it applicable for solving overdetermined or underactuated problems. </p><p>Instead, a new methodology is proposed that uses modified optimality equations. The modifications are due to the extra constraints present in the overdetermined problems. These constraints are handled by time dependent Lagrange multipliers. The modified optimality equations are solved by using symbolic differential operators. The corresponding procedure uses the MAPLE programming, which solves overdetermined problems effectively despite of the high order of differential equations involved.</p><p>The new methodology is also applied to the closed loop control problems, in which constant optimal gains are determined without using Riccatis equations.</p>
2

Analysis and computer simulation of optimal active vibration control

Dhotre, Nitin Ratnakar 08 September 2005 (has links)
<p>Methodologies for the analysis and computer simulations of active optimal vibration control of complex elastic structures are considered. The structures, generally represented by a large number of degrees of freedom (DOF), are to be controlled by a comparatively small number of actuators.</p><p>Various techniques presently available to solve the optimal control problems are briefly discussed. A Parametric optimization technique that is versatile enough to solve almost any type of optimization problems is found to give poor accuracy and is time consuming. More promising is the optimality equations approach, which is based on Pontryagins principle. Several new numerical procedures are developed using this approach. Most of the problems in this thesis are analysed in the modal space. Even complex structures can be approximated accurately in the modal space by using only few modes. Different techniques have been first applied to the cases where the number of modes to control was the same as the number of actuators (determined optimal control problems), then to cases in which the number of modes to control is larger than the number of actuators (overdetermined optimal control problems). </p><p>The determined optimal control problems can be solved by applying the Independent Modal Space Control (IMSC) approach. Such an approach is implemented in the Beam Analogy (BA) method that solves the problem numerically by applying the Finite Element Method (FEM). The BA, which uses the ANSYS program, is numerically very efficient. The effects of particular optimization parameters involved in BA are discussed in detail. Unsuccessful attempts have been made to modify this method in order to make it applicable for solving overdetermined or underactuated problems. </p><p>Instead, a new methodology is proposed that uses modified optimality equations. The modifications are due to the extra constraints present in the overdetermined problems. These constraints are handled by time dependent Lagrange multipliers. The modified optimality equations are solved by using symbolic differential operators. The corresponding procedure uses the MAPLE programming, which solves overdetermined problems effectively despite of the high order of differential equations involved.</p><p>The new methodology is also applied to the closed loop control problems, in which constant optimal gains are determined without using Riccatis equations.</p>
3

Přeurčené soustavy intervalových lineárních rovnic / Overdetermined systems of interval linear equations

Horáček, Jaroslav January 2011 (has links)
This work is focused on overdetermined systems of interval linear equati- ons. First part consists of introduction to interval arithmetics and interval linear algebra and basic theory of interval linear systems. In the second part various methods for solving overdetermined interval linear systems are de- scribed. By solution of overdetermined interval system we mean union of all solutions of all subsystems. Known and our variants of algorithms are discussed. We introduce our subsquare method. All mentioned methods are implemented in one toolbox for Matlab. Methods are tested on solvable and unsolvable overdetermined systems. For solvable systems we test solution enclosure, time and special features of methods. For unsolvable systems we test detection of unsolvability. At the end of this work we provide basic in- troduction to Intlab. 1

Page generated in 0.0917 seconds