• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual-tuned radiofrequency coils for field-cycled proton-electron double resonance imaging of free radicals

Yeung, David January 1995 (has links)
Field-cycled proton-electron double-resonance imaging (FC-PEDRI) is a technique developed to image the distribution of free radicals in biological samples. This technique is based on the Overhauser Effect that causes an enhancement in the NMR signal by saturating the ESR resonance of unpaired electrons in the sample. FC-PEDRI requires two sources of RF irradiations. To improve the sensitivity and to reduce power deposition in samples, new dual-tuned single coil designs were needed since existing dual-tuned single-coil designs known in the literature cannot operate at two widely separated frequencies. The theory of double-tuned circuits was examined and new circuit models were developed to identify the design requirements. Four new dual-tuned RF coils were developed, namely a dual-tuned split solenoidal coil (2.5 and 78 MHz), a combined saddle-birdcage (CS-B) coil (2.5 and 110 MHz), a 3-endring (3-ER) birdcage (2.5 and 56 MHz) and a 4-endring (4-ER) birdcage (2.5 and 74 MHz). A prototype coil for each design was built for performance evaluation studies and the parameters evaluated were: the Q factors, the signal-to-noise ratio, the transmit sensitivity and the field uniformity. The performance of the NMR-mode of the 3-ER and 4-ER designs was poor because the inherently low-inductance of the birdcage meant that high-value capacitors with high dissipation factors had to be used in the fabrication. A new construction method named as the multilayer self capacitance (MLSC) technique was developed to improve the efficiency of the 4-ER design by creating efficient capacitors within the conductors of the coil itself. The unloaded Q factor of the optimised 4-ER birdcage using the MLSC technique was 267 compared to 100 when commercial capacitors were used.
2

Conformational studies of medium-sized molecules by NMR spectroscopy

Swarbrick, James David January 1996 (has links)
No description available.
3

Some chemical applications of magnetic resonance

Cannon, T. H. January 1968 (has links)
No description available.
4

Some applications of nuclear magnetic resonance to inorganic chemistry

Howarth, O. W. January 1965 (has links)
No description available.
5

Espectrômetro para a transferência de polarização elétron-núcleo (efeito Overhauser) / Spectrometer for electron-nuclei polarization transfer (overhauser effect)

Biscegli, Clovis Isberto 24 June 1994 (has links)
Este trabalho apresenta os detalhes da construção de um espectrômetro para a realização de experimentos de transferência de polarização elétron-núcleo (Efeito Overhauser). São também mostrados: as implementações e modificações feitas no espectrômetro de RPE existente no Laboratório de Ressonância Magnética do DFCM, os circuitos para a construção de um equipamento de RMN para operar de forma pulsado na freqüência fixa de 14 MHz, os desenhos da cavidade de RPE construída para a banda-X (~ 9,2 GHz), os \"softwares\" modificados e desenvolvidos para aquisição de dados, tratamento e reconstrução de imagens. São apresentados os resultados do aumento do sinal de RMN e as imagens obtidas através da Tomografia de Ressonância Magnética, usando amostras menores do que 1 mm de diâmetro (volume ~10 ul), a uma concentração de 2,2 mM de TEMPOL dissolvido em água destilada. / This work describes in details the arrangements that must be accomplished for development of a spectrometer for Dynamic Nuclear Polarization - DNP (Overhauser Effect). Also, the construction project of a 14 MHz pulsed NMR spectrometer and drawings of a homemade EPR cavity for X-band (~ 9,2 GHz) are shown. The DNP probe built for the experiments and modifications done on the EPR spectrometer existing at Laboratory of Magnetic Resonance are discussed in detail. Results on the enhancement of the NMR signal due electron-proton dynamic interactions are presented. NMR imaging of very small objects, 1 mm diameter glass tube filled with 5 ~10 ul of 2,2 mM of free radicals (TEMPOL) solution, obtained through back projection reconstruction NMR tomography method, are presented
6

Reactions and Separations in Tunable Solvents

Thomas, Colin A. 20 October 2006 (has links)
The work in this thesis couples reactions with separations through the use of switchable and tunable solvents. Tunable solvents are mixed solvents which can be easily altered to afford conditions optimal for reaction or separation. Switchable solvents are solvents that can be switched when desired to alter their properties affording conditions suitable for separation. Other studies are of the reaction of CO2 with the amidine base DBU, and an NMR study of solvent-to-solute nuclear Overhauser effects. These examples constitute a marriage of reaction environment with separation environment, significantly, to the benefit of both.
7

Espectrômetro para a transferência de polarização elétron-núcleo (efeito Overhauser) / Spectrometer for electron-nuclei polarization transfer (overhauser effect)

Clovis Isberto Biscegli 24 June 1994 (has links)
Este trabalho apresenta os detalhes da construção de um espectrômetro para a realização de experimentos de transferência de polarização elétron-núcleo (Efeito Overhauser). São também mostrados: as implementações e modificações feitas no espectrômetro de RPE existente no Laboratório de Ressonância Magnética do DFCM, os circuitos para a construção de um equipamento de RMN para operar de forma pulsado na freqüência fixa de 14 MHz, os desenhos da cavidade de RPE construída para a banda-X (~ 9,2 GHz), os \"softwares\" modificados e desenvolvidos para aquisição de dados, tratamento e reconstrução de imagens. São apresentados os resultados do aumento do sinal de RMN e as imagens obtidas através da Tomografia de Ressonância Magnética, usando amostras menores do que 1 mm de diâmetro (volume ~10 ul), a uma concentração de 2,2 mM de TEMPOL dissolvido em água destilada. / This work describes in details the arrangements that must be accomplished for development of a spectrometer for Dynamic Nuclear Polarization - DNP (Overhauser Effect). Also, the construction project of a 14 MHz pulsed NMR spectrometer and drawings of a homemade EPR cavity for X-band (~ 9,2 GHz) are shown. The DNP probe built for the experiments and modifications done on the EPR spectrometer existing at Laboratory of Magnetic Resonance are discussed in detail. Results on the enhancement of the NMR signal due electron-proton dynamic interactions are presented. NMR imaging of very small objects, 1 mm diameter glass tube filled with 5 ~10 ul of 2,2 mM of free radicals (TEMPOL) solution, obtained through back projection reconstruction NMR tomography method, are presented
8

Investigations Of Spin-Dynamics And Steady-States Under Coherent And Relaxation Processes In Nuclear Magnetic Resonance Spectroscopy

Karthik, G 03 1900 (has links)
The existence of bulk magnetism in matter can be attributed to the magnetic properties of the sub-atomic particles that constitute the former. The fact that the origin of these microscopic magnetic moments cannot be related to the existence of microscopic currents became apparent when this assumption predicted completely featureless bulk magnetic properties in contradiction to the observation of various bulk magnetic properties [1]. This microscopic magnetic moment, independent of other motions, hints at the existence of a hitherto unknown degree of freedom that a particle can possess. This property has come to be known as the "spin" of the particle. The atomic nucleus is comprised of the protons and the neutrons which possess a spin each. The composite object- the atomic nucleus is therefore a tiny magnet itself. In the presence of an external bias like a magnetic field, the nucleus therefore evolves like a magnetic moment and attains a characteristic frequency in its evolution called the Larmor frequency given by, (formula) where η is the magnetogyric ratio of the particle and B is the applied magnetic field. The existence of a natural frequency presents the possibility of a resonance behaviour in the response of the system when probed with a driving field. This is the basic principle of magnetic resonance, which in the context of the atomic nucleus, was discovered independently by Purcell [2] and Bloch [3]. From its conception, the technique and the associated understanding of the involved phenomena have come a long way. In its original form the technique involved the study of the steady-state response of the nuclear magnetic moment to a driving field. This continuous wave NMR had the basic limitation of exciting resonances in a given sample, serially. In due course of time, this technique was replaced by the Fourier transform NMR (FTNMR) [4]. This technique differed from the continuous wave NMR in its study of the transient response of the system in contrast to the steady-state response in the former. The advantage of this method is the parallel observation of all the resonances present in the system ( within the band-width of the excitation). In addition to the bias created by the external field, other internal molecular fields produce additional bias which in turn produce interesting signatures on the spectrum of the system, which are potential carriers of information about the molecular state. The fact that the spins are not isolated from the molecular environment, produces a striking effect on the ideal spectrum of the system. These effects contain in them, the signatures of the molecular local environment and are hence of immense interest to physicists, chemists and biologists.
9

Molecular imaging of serine protease activity-driven pathologies by magnetic resonance / Imagerie moléculaire par résonance magnétique de l’activité de sérines protéases à serine en pathologies

Jugniot, Natacha 18 September 2019 (has links)
Ce travail porte sur le développement de sondes peptidiques pour le suivi de la protéolyse par spectroscopie de résonance paramagnétique électronique (RPE) et pour l'imagerie in vivo par résonance magnétique rehaussée de l’effet Overhauser (OMRI). Plus précisément, ce travail étudie pour la première fois une famille d’agents d’imagerie appelée « nitroxyde à déplacement de raies spectrales » spécifique d’activités enzymatiques. L'activité protéolytique, entraînant un décalage de 5 G dans les constantes de couplages hyperfins, permet une quantification individuelle des espèces substrat et produit par RPE et une excitation sélective par OMRI. Trois substrats ont été élaborés, montrant une spécificité enzymatique pour l’élastase du neutrophile (NE) (MeO-Suc-Ala-Ala-Pro-Val-Nitroxyde & Suc-Ala-Ala-Pro-Val-Nitroxyde), et pour la chymotrypsine et la cathepsine G (Suc-Ala-Ala-Pro-Phe-Nitroxyde). Les constantes enzymatiques ont montré de bonnes valeurs avec globalement, Km = 28 ± 25 µM et kcat = 19 ± 3 s-1. Ex vivo, l’utilisation des substrats NE en OMRI a révélé un contraste élevé dans les lavages broncho-alvéolaires de souris sous stimulus inflammatoire. Les rehaussements de signaux IRM sont en corrélation avec la sévérité de l’inflammation. L'irradiation à la fréquence RPE de 5425,6 MHz a permis d'accéder à la bio-distribution des substrats in vivo et pourrait ainsi servir d’outil diagnostic. Les perspectives à moyen terme de ce travail reposent sur le développement de l’OMRI à très faibles champs magnétiques en vue d’une application chez l’homme. / This work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
10

MRI and NMR Investigations of Transport in Soft Materials and Explorations of Electron-Nuclear Interactions for Liquid-State Dynamic Nuclear Polarization

Wang, Xiaoling 28 August 2015 (has links)
The first part of this dissertation (Chapters 1 to 4) describes the use of magnetic resonance techniques for polymeric material characterizations in solutions, with emphasis on methods utilizing magnetic field gradients - magnetic resonance imaging (MRI) and pulsed-field-gradient (PFG) NMR. The second part (Chapter 5) presents enhancements to dynamic nuclear polarization, an intensity enhancement approach for magnetic resonance techniques. In Chapter 2, I illustrate a characterization method to quantify free polymer chain content in a polymer/DNA complex (polyplex) formulation via one-dimensional proton NMR experiments. This assessment of free polymer quantity has critical impacts on in vivo gene transfection efficiency, cellular uptake, as well as toxicity of polycationic gene delivery vectors. Specifically, I investigated the complexation properties of three different polymeric "theranostic" agents, which combine an imaging functionality on the polymer as well as a DNA/RNA complexation component. These agents are under development to allow real time clinical monitoring of drug delivery and efficacy using MRI. Our NMR method provides simple and quantitative assessment of free and DNA-complexed polymers, including the actual polymer amine to DNA phosphate molar ratio (N/P ratio) within polyplexes. The NMR results are in close agreement with the stoichiometric number of polymer/DNA binding obtained by isothermal titration calorimetry. The noninvasive nature of this method allows broad application to a range of polyelectrolyte coacervates, for understanding and optimizing polyelectrolyte complex formation. Chapter 3 demonstrates a time-resolved MRI approach for measuring diffusion of drug-delivery polymeric nanoparticles on mm to cm scales as well as monitoring nanoparticle concentration distribution in bulk biological hydrogels. Our results show that as the particle size and surface charge become larger, collagen gel at tumor relevant concentration (1.0 wt.%) presents a more significant impediment to the diffusive transport of negatively charged nanoparticles. These results agree well with those obtained by fluorescence spectroscopies (neutral or slightly positively charged diffusing particles) as well as the proposed electrostatic bandpass theory of tumor interstitium (negatively charged particles). This study provides fundamental information for the design of polymeric theranostic vectors and carries implications that would benefit the understanding of nanoparticle transport in solid tumors. Furthermore, this work takes a significant step toward developing quantitative and real time in vivo monitoring of clinical drug delivery using MRI. Chapter 4 addresses the application of PFG-NMR for the determination of weight-average molar mass (Mw) for polyanions that have anti-HIV activity through the measurement of polymer diffusion coefficients in solutions. The effective characterization of molecular weights of polyelectrolytes has been a general and growing problem for the polymer industry, with no clear solutions in sight. In this study, we obtained the molar masses (Mw) for two series of sulfonated copolymers using sodium polystyrene sulfonate samples as molecular weight standards. PFG-NMR has notable advantages over conventional techniques for the characterization of charged polymers and shows great promise for becoming an effective alternative to chromatography methods. Chapter 5 is devoted to experimental and theoretical studies of liquid state dynamic nuclear polarization (DNP) via the Overhauser effect. Based on the adventurous work done by previous Dorn group members, we show that for 1H-nuclide-containing systems, the dipolar DNP enhancement can be significantly improved by decreasing the correlation time of the interaction by utilizing a supercritical fluid (SF CO2) which allows for greater dipolar enhancements at higher magnetic fields. For molecules containing the ubiquitous 13C nuclide, we show that previously unreported sp hybridized (H-C) alkyne systems represented by the phenylacetylene-nitroxide system exhibit very large scalar-dominated enhancements. Furthermore, we show for a wide range of molecular systems that the Fermi contact interaction can be computationally predicted via electron-nuclear hyperfine coupling and correlated with experimental 13C DNP enhancements. For biomedical applications, the enhancement of metabolites in SF CO2 followed by rapid dissolution in water or biological fluids is an attractive approach for future hyperpolarized NMR and MRI applications. Moreover, with the aid of density functional theory calculations, solution state DNP provides a unique approach for studying intermolecular weak bonding interaction of solutes in normal liquids and SF fluids. / Ph. D.

Page generated in 0.062 seconds