• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel synthetic nano-catalyst (Ag2O3/Zeolite) for high quality of light naphtha by batch oxidative desulfurization reactor

Nawaf, A.T., Hameed, S.A., Abdulateef, L.T., Jarullah, A.T., Kadhim, M.S., Mujtaba, Iqbal M. 30 March 2022 (has links)
Yes / Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer-Emmett-Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80-140 °C) and reaction times (30-50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results.
2

Design of an environmentally friendly reactor for naphtha oxidative desulfurization by air employing a new synthetic nano-catalyst based on experiments and modelling

Ahmed, G.S., Jarullah, A.T., Al-Tabbakh, B.A., Mujtaba, Iqbal M. 31 March 2022 (has links)
Yes / Due to the environmental legislations related to sulfur content and proceeding with the challenges to find an appropriate catalyst of such contamination producing clean fuel, a main thrust for improving of more efficient technologies on new oxidative catalyst is viewed a vital issue in fuel quality development. So, in this study, the sulfur compound (ethyl mercaptan) presents in light naphtha feedstock is removed by oxidative desulfurization (ODS) in a batch reactor using a new homemade nano-catalyst and air as oxidant under different reaction conditions (reaction temperatures, reaction time and the initial sulfur concentrations) that has not been studied in such field. The catalyst is zinc oxide supported on zeolite nanoparticles which is locally prepared by Incipient Wetness Impregnation (IWI) method. Mathematical model of the relevant reactions is also developed in this study to match the experimental results via obtaining the optimal kinetic parameters utilizing optimization techniques within gPROMS program. Such optimization is conducted using two approaches (linear and nonlinear regression) and the results showed that the nonlinear approach is more accurate than linear approach. The optimal kinetic parameters are then used to achieve a clean fuel via getting the optimal operation conditions based on the maximum conversion. Where, higher than 99% of the process conversion has obtained at temperature of 327.4 K, reaction time at163.6 min and initial concentration of 335.3 ppm.

Page generated in 0.1161 seconds