Spelling suggestions: "subject:"exidative stress -- 3prevention"" "subject:"exidative stress -- b.prevention""
1 |
Approaches for raising the level of FOXO3a in animal cellsUnknown Date (has links)
The turtle is a unique model of anoxic survival. The turtle's brain can tolerate total oxygen deprivation for hours to days as well as prevent high levels of mitochondrial-derived free radicals upon re-oxygenation. Because of its ability to prevent elevated free radical generation, the turtle has also become recognized as a model of exceptional longevity. We are employing the turtle model for an investigation into the regulation of a key antioxidant enzyme system - methionine sulfoxide reductases (Msrs), primarily MsrA and MsrB. The Msr system is capable of reversing oxidation of methionines in proteins and Msr subtypes have been implicated in protecting tissues against oxidative stress, as well as, enhancing the longevity of organisms from yeast to mammals. Preliminary data, unpublished results, indicate that MsrA protein and transcripts are elevated by anoxia. A recent study on Caenorhabditis elegans demonstrated that FOXO is involved in activation of the MsrA promoter. Using the turtle MsrA promoter sequence we worked to determine which regions in the promoter are necessary for activation by anoxia. The results of the present study were 1) to prepare a TAT-FOXO3a fusion protein which could penetrate animal cells and 2) to construct a FOXO3a expression vector for transcription studies on MsrA expression. / by Diana Navarro. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
|
2 |
Neuroprotective effect of green tea extractsCheng, Tak-him, Terence., 鄭德謙. January 2008 (has links)
published_or_final_version / Biological Sciences / Master / Master of Philosophy
|
3 |
Mitochondrial regulation pathways in the lens: pink1/parkin- and bnip3l-mediated mechanismsUnknown Date (has links)
The mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged mitochondria for degradation. While BNIP3L, an outer mitochondrial membrane protein, increases in expression in response to excess mitochondria and organelle degradation during cellular differentiation. We have shown that PARKIN is both induced and translocates from the cytoplasm to the mitochondria in human epithelial lens cells upon oxidative stress exposure. In addition, our findings also show that overexpression of BNIP3L causes premature clearance of mitochondria and other organelles, while loss of BNIP3L results in lack of clearance. Prior to this work, PARKIN mediated mitophagy had not been shown to act as a protective cellular response to oxidative stress in the lens. This project also resulted in the novel finding that BNIP3L-mediated mitophagy mechanisms are required for targeted organelle degradation in the lens. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
|
4 |
Neuroprotection During Acute Oxidative Stress: Role of the PKG Pathway and Identification of Novel Neuromodulatory Agents Using Drosophila MelanogasterUnknown Date (has links)
Oxidant stress and injury is inherent in many human diseases such as ischemic vascular and respiratory diseases, heart failure, myocardial infarction, stroke, perinatal and placental insufficiencies, diabetes, cancer, and numerous psychiatric and neurodegenerative disorders. Finding novel therapeutics to combat the deleterious effects of oxidative stress is critical to create better therapeutic strategies for many conditions that have few treatment options. This study used the anoxia-tolerant fruit fly, Drosophila melanogaster, to investigate endogenous cellular protection mechanisms and potential interactions to determine their ability to regulate synaptic functional tolerance and cell survival during acute oxidative stress. The Drosophila larval neuromuscular junction (NMJ) was used to analyze synaptic transmission and specific motor axon contributions. Drosophila Schneider 2 (S2) cells were used to assess viability. Acute oxidative stress was induced using p harmacological paradigms that generate physiologically relevant oxidant species: mitochondrial superoxide production induced by sodium azide (NaN3) and hydroxyl radical formation via hydrogen peroxide (H2O2). A combination of genetic and pharmacological approaches were used to explore the hypothesis that endogenous protection mechanisms control cellular responses to stress by manipulating ion channel conductance and neurotransmission. Furthermore, this study analyzed a group of marine natural products, pseudopterosins, to identify compounds capable of modulating synaptic transmission during acute oxidative stress and potential novel neuromodulatory agents. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
5 |
aB- crystallin/sHSP is required for mitochondrial function in human ocular tissueUnknown Date (has links)
by Rebecca McGreal. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web. / The central premise of this dissertation is that the small heat shock protein (sHSP), (Sa(BB-crystallin is essential for lens and retinal pigmented epithelial (RPE) cell function and oxidative stress defense. To date, the mechanism by which it confers protection is not known. We hypothesize that these functions could occur through its ability to protect mitochondrial function in lens and RPE cells. To test this hypothesis, we examined the expression of (Sa(BB-crystallin/sHSP in lens and RPE cells, we observed its localization in the cells, we examined translocation to the mitochondria in these cells upon oxidative stress treatment, we determined its ability to form complexes with and protect cytochrome c (cyt c) against damage, and we observed its ability to preserve mitochondrial function under oxidative stress conditions in lens and RPE cells. In addition to these studies, we examined the effect of mutations of (Sa(BB-crystallin/sHSP on its cellular localization and translocation patterns under oxidative stress, its in vivo and in vitro chaperone activity, and its ability to protect cyt c against oxidation. Our data demonstrated that (Sa(BB-crystallin/sHSP is expressed at high levels in the mitochondria of lens and RPE cells and specifically translocates to the mitochondria under oxidative stress conditions. We demonstrate that (Sa(BB-crystallin/sHSP complexes with cyt c and protects it against oxidative inactivation. Finally, we demonstrate that (Sa(BB-crystallin/sHSP directly protects mitochondria against oxidative inactivation in lens and RPE cells. Since oxidative stress is a key component of lens cataract formation and age-related macular degeneration (AMD), these data provide a new paradigm for understanding the etiology of these diseases.
|
6 |
Amelioration of oxidative stress in human endothelial cells by caffeic acid phenethyl ester (CAPE) and fluorinated derivatives (FCAPES) and pharmacokinetic characterization of CAPE and FCAPE in ratsWang, Xinyu, 1974 Aug. 12- 29 August 2008 (has links)
Tissue ischemia is a major cause of morbidity contributing to disease processes such as cardiovascular diseases, stroke, cancer, and traumatic injury and may lead to death. Failure to quickly reestablish flow to ischemic tissue results in tissue death. However, even timely return to normal flow has a downside in that the reintroduction of oxygen to ischemic tissue results in ischemia/reperfusion (I/R) injury that produces an oxidant stress. This pathological process requires new therapeutic strategies and agents to reduce the personal, social and economic loss. One of the most generally accepted mechanisms for the pathology of I/R injury is the production of the reactive oxygen species (ROS), suggesting antioxidants may ameliorate I/R injury. Caffeic acid phenethyl ester (CAPE), a plant derived polyphenolic compound, has been shown to protect organs from I/R induced damage in vivo, and this effect has been attributed to its antioxidant activity. To better understand the mechanism of CAPE protection, a model using menadione-induced oxidative stress in human endothelial cells to simulate I/R injury in vitro was developed. Gene expression analysis was performed with microarrays undergoing cytoprotection with CAPE. The dose-dependent cytoprotection of CAPE has been related to its induction of heme oxygenase-1 (HO-1). With the aim of improving the beneficial effect of CAPE and understanding structure activity relationship, six new catechol ring-fluorinated CAPE derivatives were synthesized and evaluated in the menadione-endothelial cell model. The data suggest good cytoprotective effects of CAPE and some analogues and indicate important structural features for cytoprotection. Further investigation of the mechanism of cytoprotection showed that cytoprotection profiles of CAPE and derivatives correlate better to their ability to induce HO-1 in human endothelial cells than free radical scavenging activity. One CAPE derivative (FCAPE) with cytoprotective effects similar to CAPE in vitro exhibited better stability in rat plasma. A validated ultra-performance liquid chromatography/tandem mass spectrometric method was developed that allowed for quantification of CAPE and FCAPE in plasma samples. Pharmacokinetic studies in male Sprague Dawley rats following intravenous bolus administration of 5, 10, and 20 mg/kg CAPE and 20 mg/kg FCAPE were performed. The results indicate that dose proportionality for CAPE does not exist in the dose range studied. Although the elimination half life was found not to be significant different between CAPE and FCAPE, significant difference was observed between the total body clearance of FCAPE and CAPE which may due to the difference in volume of distribution.
|
7 |
Developmental and Protective Mechanisms of the Ocular Lens.Unknown Date (has links)
The vertebrate eye lens functions to focus light onto the retina to produce vision.
The lens is composed of an anterior monolayer of cuboidal epithelial cells that overlie a
core of organelle free fiber cells. The lens develops and grows throughout life by the
successive layering of lens fiber cells via their differentiation from lens epithelial cells.
Lens developmental defect and damage to the lens are associated with cataract formation,
an opacity of the lens that is a leading cause of visual impairment worldwide. The only
treatment to date for cataract is by surgery. Elucidating those molecules and mechanisms
that regulate the development and lifelong protection of the lens is critical toward the
development of future therapies to prevent or treat cataract. To determine those
molecules and mechanisms that may be important for these lens requirements we
employed high-throughput RNA sequencing of microdissected differentiation statespecific
lens cells to identify an extensive range of transcripts encoding proteins expressed by these functionally distinct cell types. Using this data, we identified
differentiation state-specific molecules that regulate mitochondrial populations between
lens epithelial cells that require the maintenance of a functional population of
mitochondria and lens fiber cells that must eliminate their mitochondria for their
maturation. In addition, we discovered a novel mechanism for how lens epithelial cells
clear apoptotic cell debris that could arise from damage to the lens and found that UVlight
likely compromises this system. Moreover, the data herein provide a framework to
determine novel lens cell differentiation state-specific mechanisms. Future studies are
required to determine the requirements of the identified molecules and mechanisms
during lens development, lens defense against damage, and cataract formation. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
8 |
Antioxidant mechanisms of ascorbate and (R)-α-lipoic acid in aging and transition metal ion-mediated oxidative stressShu, Jung Hyuk 15 July 2003 (has links)
Oxidative stress is the major driving force behind the aging process and many
age-related diseases. However, direct experimental evidence of whether antioxidants,
such as ascorbate (AA) and lipoic acid (LA) can slow the progression of aging process
and/or reduce risks of developing degenerative disease is largely absent. This suggests
a better understanding of the precise mechanism of how dietary micronutrient affect
parameters of involved in cellular redox balance and aging are warranted. In this
dissertation, young and old rats were used as our model to understand potential pro-oxidant
events that contribute to increases in oxidative stress in various tissues and
how antioxidants such as ascorbate and lipoic acid influence these events. Our major
findings are that the age-related impairment of mitochondria and increased deposition
of iron contribute significantly to heighten levels of oxidative stress, as evidenced by
the resultant increases in the rates of oxidant appearance and in the levels of oxidative
damage to DNA, lipids and proteins. We find that AA and LA strongly protected
against transition metal-ion dependent increases in oxidative stress. AA effectively
inhibited transition metal-mediated lipide peroxidation in human plasma. LA in its
reduced form effectively binds iron and copper in a redox inactive manner and
reversed chronically elevated levels of iron in the brain without removing enzyme
bound transition metal ions. LA also significantly attenuated the age-related increase
in oxidative stress associated with mitochondrial decay in the heart, as evidenced by
the improvements in AA levels and glutathione redox status. The declines in tissue
GSH levels in aged rats were strongly associated with the diminished γ-GCL activity
(in parallel with decreased expression of the catalytic and modulatory subunits), and
lowered Nrf2 expression and binding to ARE sequence in rat liver. Remarkably, all
these events were effectively reversed by the administration of LA, modulating the
parameters to return to the observed in young animals. The implications of this work
open new avenues not only for further understanding of the aging process but also for
possible strategies in its modulation by the micronutrients. / Graduation date: 2004
|
9 |
Inhibition of exercise-induced oxidative stress, inflammation and muscle damage by prior supplementation with the antioxidant vitamins E and CMastaloudis, Angela 13 April 2004 (has links)
Graduation date: 2004
|
Page generated in 0.1408 seconds