Spelling suggestions: "subject:"oxide thin films"" "subject:"oxide thin wilms""
11 |
Fabrication and characterization of p-type CuO / n-type ZnO heterostructure gas sensors prepared by sol-gel processing techniques /Ravichandran, Ram. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 97-109). Also available on the World Wide Web.
|
12 |
Doping in zinc oxide thin filmsYang, Zheng. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references. Also issued in print.
|
13 |
Plasma enhanced chemical vapor deposition of thin aluminum oxide filmsMiller, Larry M. January 1993 (has links)
Thesis (M.S.)--Ohio University, March, 1993. / Title from PDF t.p.
|
14 |
Properties and characterisation of sputtered ZnO : a thesis presented for the degree of Doctor of Philosophy in Electrical and Computer Engineering at the University of Canterbury, Christchurch, New Zealand /Schuler, Leo P. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). "November 2008." Includes bibliographical references (p. [144]-149). Also available via the World Wide Web.
|
15 |
Fabrication and characterization of zirconium oxide thin filmsVemuri, Venkata Rama Sesha Ravi Kumar, January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
16 |
Zinc oxide : a spectroscopic investigation of bulk crystals and thin films : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at the University of Canterbury /Miller, Paul, January 2008 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. 153-159). Also available via the World Wide Web.
|
17 |
Investigation of the influence of cadmium processing on Zn1-xGa2O4-x:Mn thin films for photoluminescent and thin film electroluminescent applications /Flynn, Michael John. Kitai, Adrian, January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2003. / Advisor: A.H. Kitai. Includes bibliographical references (leaves 193-199). Also available via World Wide Web.
|
18 |
Studies of efficient and stable organic solar cells based on aluminum-doped zine oxide transparent electrodeLiu, Hanxiao 20 August 2014 (has links)
Organic solar cells (OSCs) have attracted significant attention due to their potential of large area solution fabrication capability at low-cost. For bulk heterojunction (BHJ) OSCs, a thin film of transparent conducting indium tin oxide (ITO), coated on glass or flexible plastic substrate, is widely used as a front electrode. However, indium is not abundant on Earth. Its price has increased continuously over the past 10 years and will likely become an obstacle for the commercialization of OSCs at low cost. Aluminum-doped zinc oxide (AZO) is a promising ITO alternative due to its advantages of high electric conductivity, optical transparency, non-toxicity and low cost. However, reports on OSCs using AZO electrode are quite limited, due to the relatively lower power conversion efficiency (PCE) of AZO-based OCSs as compared to that of ITO-based OCSs. This work focused on studies of high performance AZO-based OSCs through AZO surface modification, absorption enhancement and process optimization. The optical and electronic properties of AZO film including transmittance, sheet resistance, surface morphology and surface work function were characterized. AZO-based OSCs with conventional and inverted structures were fabricated. It was found that AZO-based OSCs with inverted structure demonstrated superior performance than the ones with conventional structure. The inverted structure avoids the use of acidic PEDOT:PSS hole transporting layer, allows the improving of the absorbance of the OSCs and therefore its efficiency. An AZO front transparent cathode was used for application in high performance inverted BHJ OSCs. The photoactive layer consisted a blend of poly[[4,8-bis[(2- ethylhexyl)oxy] benzo [1,2-b:4,5-b'] dithiophene-2,6- diyl][3-fluoro- 2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]](PTB7):3'H-Cyclopropa[8,25][5,6]fullerene- C70- D5h(6)-3'-butanoicacid, 3'-phenyl-, methyl ester (PC70BM). A structurally identical control OSC having an ITO front cathode was also fabricated for comparison studies. The structure of OSCs was optimized to achieving absorption enhancement in the active layer. AZO and ITO were modified with a 10 nm thick solution-processed ZnO interlayer to facilitate the efficient electron extraction. The results revealed that bilayer AZO/ZnO and the ITO/ZnO cathodes possess similar electron extraction property. AZO layer has a transparency cutoff at wavelength < 380 nm, results in a slight decrease in the short-circuit current density (JSC). However, the decrease in JSC is very small because the main energy of solar irradiation falls in the spectrum with wavelength > 380 nm. It shows that AZO-based OSCs have a promising PCE of 6.15%, which is slightly lower than that of a control ITO-based OSC (6.57%). AZO-based OSCs, however, demonstrate an obvious enhancement in the stability under an ultraviolet (UV)-assisted acceleration aging test. The significant enhancement in the stability of AZO-based OSCs arises from the tailored absorption of AZO electrode in wavelength < 380 nm, which serves as a UV filter to inhibit an inevitable degradation process in ITO-based OSCs due to the UV irradiation. In order to further investigate the degradation mechanism of OSCs under UV exposure, the change in charge collection characteristics of the OSCs made with ITO/ZnO and AZO/ZnO front cathode before and after UV exposure was examined. It was found that there was an obvious decrease in the charge extraction efficiency of ITO-based OSCs after UV exposure, while there was no observable change in the charge extraction efficiency of OSCs made with AZO/ZnO cathode under the same acceleration aging test. This work demonstrates that AZO is a suitable ITO alternative for application in OSCs, offering an improved device stability, comparable PCE and cell fabrication processes with an attractive commercial potential.
|
19 |
On the mocvd growth of ZnOPagni, Olivier Demeno January 2004 (has links)
Zinc oxide (ZnO) is a II-VI semiconductor material that offers tremendous potential as a light emitter in the blue-to-UV range. It has a wurtzite structure, and a direct band gap that can be tuned from 3.0 to 4.0 eV by alloying with Cd or Mg, respectively. In this work, ZnO thin films were grown by metalorganic chemical vapor deposition (MOCVD) on n-Si 2 ° off (100), amorphous glass, n-GaAs (100), and c-plane sapphire substrates. Diethyl zinc (DEZn) and tert-butanol (TBOH) were chosen as precursors. For the first time, Second Harmonic Generation Imaging was applied to the mapping of ZnO epilayers. The images obtained highlighted the polycrystalline character of the thin films, and provided insight as to the growth mode of ZnO on Si. The influence of substrate temperature on the structural properties of the epilayers was investigated by X-ray diffraction and optical microscopy. Grain sizes as high as 54 nm were measured. The optimum temperature range for this system proved to be 450 – 500 °C. The influence of the VI:II ratio during growth on the optical properties of the epilayers was studied by UV-vis-near IR spectroscopy. The lowest Urbach tail E0 parameter was measured for material grown at a VI:II ratio of 18:1. The films’ free electron concentration was shown to decrease by over two orders of magnitude, from 1019 to 1017 cm-3, as the VI:II ratio increased from 10 to 60:1. This decrease in carrier concentration with rising VI:II ratio was paralleled to the surge at 12 K of a photoluminescence (PL) emission band characteristic of p-type ZnO. The band gap energies extracted from room temperature transmission spectra ranged between 3.35 and 3.38 eV, in agreement with the value of 3.35 eV measured by room temperature PL. Moreover, variable temperature PL spectra were recorded between 12 and 298 K on ZnO grown on Si. The 12 K spectrum was dominated by a donor-bound exciton (D°X) at 3.36 eV, while the 298 K scan displayed strong free exciton emission (FX) at 3.29 eV. The width of the D°X band proved to be as narrow as 7 meV. The intensity ratio between the room temperature near-band edge emission and the defect-related green band was as high as 28:1, highlighting the optical quality of the layers deposited in this work. The electrical properties of the thin films were studied by Hall measurements (van der Pauw configuration), and a maximum room temperature mobility of 11 cm2/Vs was recorded. Furthermore, a palladium (Pd) Schottky barrier diode on ZnO was fabricated. The barrier height and ideality factor were calculated from current–voltage measurements to be 0.83 eV and 1.6, respectively. The capacitance–voltage curve of the diode yielded a carrier concentration in the depletion region of 8·1017 cm-3. This study has shown that the optical and electrical properties of ZnO depend strongly on the growth conditions employed. A suitable choice of growth parameters can yield high quality ZnO that may be used for various devices. Keywords: Hall, MOCVD, optical spectroscopy, photoluminescence, Schottky barrier diode, SH Imaging, X-ray diffraction, ZnO.
|
20 |
Strain-Engineered Bismuth-Based Oxide Thin Films for MultifunctionalitiesHan Wang (7043318) 12 October 2021 (has links)
<div>Multifunctional characteristics of Bismuth-based oxides offer great opportunities to design a variety of devices exploiting either a single functionality or the synergistic multifunctionalities. In the past decades, strain engineering of thin films arose as a solution for fabrication of novel structures with highly desired properties. In this thesis, strain engineering has been applied to Bismuth-based oxides to explore the strain effect on thin film structures and functionalities.</div><div>BiFeO<sub>3</sub> (BFO) servers as the first study platform, because of its strain-induced phase transition and the corresponding diverse polarization properties. The strain effect of SrRuO<sub>3</sub> (SRO)-buffered substrates on ferroelectric and optical properties of BFO thin films has been investigated. A wide range of strain states have been achieved in BFO films. The ferroelectricity and bandgap have been effectively tuned even with partial strain relaxation. However, pure BFO suffers from high leakage current and large coercive field. To overcome these limitations, Sm-doped BFO (BSFO) systems emerged and has been used in controlling the microstructure and properties of BFO. Our detailed structure analysis proves the Sm doping amount in BSFO thin films can be tuned effectively via deposition temperature. Consequently, the Sm dopant influences phase formation of BSFO and the macroscopic ferroelectric properties. </div><div>Another member in Bismuth-based oxide family, Bi<sub>2</sub>WO<sub>6</sub> (BWO), has been selected as the base material for the design of the two-phase nanocomposites, because of its unique layered structure and ferroelectric property. To introduce ferromagnetic component into BWO, two methods have been explored. The first method incorporates Mn cations into the BWO matrix (BWMO), and the second method couples CoFe2O4 (CFO) as secondary phase with BWO to form a vertically aligned nanocomposite (VAN) system. Both systems exhibit robust ferromagnetic and ferroelectric response at room temperature and demonstrate their promise as room temperature multiferroics for future spintronics and memory applications. </div><div>The studies in this dissertation demonstrate the great structure flexibility and tunable functionalities of BFO and BWO systems. It shows the potential structure modification and property control of other Bi-based oxides. In the last chapter, new experimental plans and directions are proposed. The connections between the strain engineering and the tunable material properties are being built for various applications. </div><div><br></div>
|
Page generated in 0.0525 seconds