• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating radiation effects in iron with embedded oxide nanoparticles

Lazauskas, Tomas January 2014 (has links)
Alloys used in fission and in future fusion reactors are subjected to extreme conditions including high temperatures, corrosive and intense radiation environments. Understanding the processes occurring at the microscopic level during radiation events is essential for the further development of them. As a prospective candidate material for new reactors, oxide dispersion strengthened (ODS) steels have shown good radiation resistance and the ability to trap He into fine scale bubbles, thus preventing swelling and preserving high-temperature strength. This thesis represents the findings obtained by performing computational studies of radiation effects in pure iron, Y-Ti-O systems and a simplified model of ODS using Molecular Dynamics (MD) and on-the-fly Kinetic Monte Carlo (otf-KMC) techniques. MD studies of radiation damage were carried out in a perfect body-centred cubic (bcc) iron matrix (alpha-Fe) in which yttria nanoparticles are embedded as a simplified model of an ODS steel. The results have shown how the nanoparticles interact with nearby initiated collision cascades, through cascade blocking and energy absorption. Fe defects accumulate at the interface both directly from the ballistic collisions and also by attraction of defects generated close by. The nanoparticles generally remain intact during a radiation event and release absorbed energy over times longer than the ballistic phase of the collision cascade. Also the nanoparticles have shown ability to attract He atoms as a product of fission and fusion reactions. Moreover, studies showed that He clusters containing up to 4 He atoms are very mobile and clusters containing 5 He or more become stable by pushing an Fe atom out of its lattice position. The radiation damage study in the Y-Ti-O materials showed two types of residual damage behaviour: when the damage is localized in a region, usually close to the initial primary knock-on atom (PKA) position and when PKA is directed in the channelling direction and creates less defects compared to the localised damage case, but with a wider spread. The Y2TiO5 and Y2Ti2O7 systems showed increased recombination of defects with increased temperature, suggesting that the Y-Ti-O systems could have a higher radiation resistance at higher temperatures. The otf-KMC technique was used to estimate the influence of the prefactor in the Arrhenius equation for the long time scale motion of defects in alpha-Fe. It is shown that calculated prefactors vary widely between different defect types and it is thus important to determine these accurately when implementing KMC simulations. The technique was also used to study the recombination and clustering processes of post-cascade defects that occur on the longer time scales.
2

Stress Corrosion Cracking Behavior of Oxide Dispersion Strengthened Ferritic Steel in Supercritical Pressurized Water / 超臨界圧水中における酸化物分散強化フェライト鋼の応力腐食割れ挙動

Je, Hwanil 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第17914号 / エネ博第286号 / 新制||エネ||59(附属図書館) / 30734 / 京都大学大学院エネルギー科学研究科エネルギー変換科学専攻 / (主査)教授 木村 晃彦, 教授 星出 敏彦, 教授 小西 哲之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
3

Sub-grain structure in additive manufactured stainless steel 316L

Zhong, Yuan January 2017 (has links)
The thesis focuses on exploring the sub-grain structure in stainless steel 316L prepared by additive manufacturing (AM). Two powder-bed based AM methods are involved: selective laser melting (SLM) and electron beam melting (EBM). It is already known that AM 316L has heterogeneous property and hierarchy structure: micro-sized melt pools, micro-sized grains, nano-sized sub-grain structure and nano-sized inclusions. Yet, the relation among these structures and their influence on mechanical properties have not been clearly revealed so far. Melt pool boundaries having lower amount of sub-grain segregated network structures (Cellular structure) are weaker compared to the base material. Compared with cell boundaries, grain boundaries have less influence on strength but are still important for ductility. Cell boundaries strengthen the material without losing ductility as revealed by mechanical tests. Cellular structure can be continuous across the melt pool boundaries, low angle sub-grain boundaries, but not grain boundaries. Based on the above understanding, AM process parameters were adjusted to achieve customized mechanical properties. Comprehensive characterization were carried out to investigate the density, composition, microstructure, phase, magnetic permeability, tensile property, Charpy impact property, and fatigue property of both SLM and EBM SS316L at room temperature and at elevated temperatures (250°C and 400°C). In general, SLM SS316L has better strength while EBM SS316L has better ductility due to the different process conditions. Improved cell connection between melt pools were achieved by rotating 45° scanning direction between each layer compared to rotating 90°. Superior mechanical properties (yield strength 552 MPa and elongation 83%) were achieved in SLM SS316L fabricated with 20 µm layer thickness and tested in the building direction. Y2O3 added oxide dispersed strengthening steel (ODSS) were also prepared by SLM to further improve its performance at elevated temperatures. Slightly improved strength and ductility (yield strength 574 MPa and elongation 90%) were obtained on 0.3%Y2O3-ODSS with evenly dispersed nanoparticles (20 nm). The strength drops slightly  but ductility drops dramatically at elevated temperatures. Fractographic analysis results revealed that the coalescence of nano-voids is hindered at room temperature but not at elevated temperatures. The achieved promising properties in large AM specimens assure its potential application in nuclear fusion. For the first time, ITER first wall panel parts with complex inner pipe structure were successfully fabricated by both SLM and EBM which gives great confidence to application of AM in nuclear industry. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
4

The irradiation resistance of oxide dispersion strengthened steels

Burrows, Christopher John January 2015 (has links)
Reduced activation oxide dispersion strengthened (ODS) steels are candidate alloys for use in fusion reactor systems and are fabricated by mechanically alloying yttrium oxide to a reduced activation ferritic steel powder. The product is consolidated at high temperature by hot isostatic pressing (HIP), producing a dispersion of nanometre sized oxide particles throughout the ferritic microstructure. These particles have been shown to both improve the high temperature mechanical properties of the alloy and provide trapping sites for helium gas. The use of these particles to sequester helium is of particular significance in the development of a structural ODS steel for fusion reactor systems. A fusion power reactor, based on the ITER design, is expected to produce over 2000 appm transmutant helium in any steel components exposed to the core neutron flux. At these gas concentrations, conventional steels undergo severe swelling and embrittlement, motivating the development of materials capable of managing helium accumulation. This thesis investigates the use of the oxide particle dispersion in sequestering helium introduced by ion implantation. An initial characterisation of a model Fe-14Cr-0.25Y<sub>2</sub>O<sub>3</sub> (wt&percnt;) system was completed using high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). This demonstrated the efficacy of the production methods and the gas trapping capabilities of the oxide particles via argon gas, introduced during the mechanical alloying process. The subsequent consolidation of a full set of Fe-14Cr-3W-0.2Ti-0.25Y<sub>2</sub>O<sub>3</sub> (wt&percnt;) ODS alloys at 1150&deg;C, 1050 &deg;C and 950 &deg;C produced a systematic variation in the density of the particle dispersion. The characterisation of these materials using APT provided an insight into the consistent Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> particle chemistry found in each consolidation, and identified a stoichiometric shift from Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> to YTiO2 following short term annealing periods at 1000&deg;C. Though further work is required, this shift is thought to be consistent with a thermodynamically mediated transition of the metastable clusters to stable oxide particles. Following implantation with 2000 appm helium and examination under TEM, the helium bubble and particle densities were found to be closely correlated thus providing evidence for an association between the particles and the gas bubbles. Controlling the helium bubble density via the particle dispersion demonstrates the potential use of processing temperature in controlling how helium accumulates in an implanted ODS microstructure. The effects of both bubble and particle densities on mechanical properties were investigated further using nanoindentation methods. Significant local variation in the hardness of the ODS steels was found to result from the bimodal grain size distribution of the material. By using only those measurements taken from large grained regions of the ODS, the grain refinement and particle hardening effects could be deconvolved and used to quantify particle hardening using a dispersed barrier model. The significant hardening effects with helium addition observed in the reference alloys were found to be almost entirely absent from the ODS systems, though anomalous softening in the 950&deg;C consolidation indicated a potentially unexpected interaction between the bubble and particle populations. A possible explanation for this anomaly and a proposal for further work to establish its origin is discussed.

Page generated in 0.1425 seconds