• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ab initio simulation methods for the electronic and structural properties of materials applied to molecules, clusters, nanocrystals, and liquids

Kim, Minjung, active 21st century 10 July 2014 (has links)
Computational approaches play an important role in today's materials science owing to the remarkable advances in modern supercomputing architecture and algorithms. Ab initio simulations solely based on a quantum description of matter are now very able to tackle materials problems in which the system contains up to a few thousands atoms. This dissertation aims to address the modern electronic structure calculation methods applied to a range of various materials such as liquid and amorphous phase materials, nanostructures, and small organic molecules. Our simulations were performed within the density functional theory framework, emphasizing the use of real-space ab initio pseudopotentials. On the first part of our study, we performed liquid and amorphous phase simulations by employing a molecular dynamics technique accelerated by a Chebyshev-subspace filtering algorithm. We applied this technique to find l- and a- SiO₂ structural properties that were in a good agreement with experiments. On the second part, we studied nanostructured semiconducting oxide materials, i.e., SnO₂ and TiO₂, focusing on the electronic structures and optical properties. Lastly, we developed an efficient simulation method for non-contact atomic force microscopy. This fast and simple method was found to be a very powerful tool for predicting AFM images for many surface and molecular systems. / text

Page generated in 0.1152 seconds