• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Growth Mechanism of Potassium Superoxide in K-O2 Batteries and Improvements of Performance and Anode Stability upon Cycling

Xiao, Neng 25 October 2016 (has links)
No description available.
2

Synthesis and characterization of inorganic nanostructured materials for advanced energy storage

Xie, Jin January 2015 (has links)
Thesis advisor: Dunwei Wang / The performance of advanced energy storage devices is intimately connected to the designs of electrodes. To enable significant developments in this research field, we need detailed information and knowledge about how the functions and performances of the electrodes depend on their chemical compositions, dimensions, morphologies, and surface properties. This thesis presents my successes in synthesizing and characterizing electrode materials for advanced electrochemical energy storage devices, with much attention given to understanding the operation and fading mechanism of battery electrodes, as well as methods to improve their performances and stabilities. This dissertation is presented within the framework of two energy storage technologies: lithium ion batteries and lithium oxygen batteries. The energy density of lithium ion batteries is determined by the density of electrode materials and their lithium storage capabilities. To improve the overall energy densities of lithium ion batteries, silicon has been proposed to replace lithium intercalation compounds in the battery anodes. However, with a ~400% volume expansion upon fully lithiation, silicon-based anodes face serious capacity degradation in battery operation. To overcome this challenge, heteronanostructure-based Si/TiSi2 were designed and synthesized as anode materials for lithium ion batteries with long cycling life. The performance and morphology relationship was also carefully studied through comparing one-dimensional and two-dimensional heteronanostructure-based silicon anodes. Lithium oxygen batteries, on the other hand, are devices based on lithium conversion chemistries and they offer higher energy densities compared to lithium ion batteries. However, existing carbon based electrodes in lithium oxygen batteries only allow for battery operation with limited capacity, poor stability and low round-trip efficiency. The degradation of electrolytes and carbon electrodes have been found to both contribute to the challenges. The understanding of the synergistic effect between electrolyte decomposition and electrode decomposition, nevertheless, is conspicuously lacking. To better understand the reaction chemistries in lithium oxygen batteries, I designed, synthesized, and studied heteronanostructure-based carbon-free inorganic electrodes, as well as carbon electrodes whose surfaces protected by metal oxide thin films. The new types of electrodes prove to be highly effective in minimizing parasitic reactions, reducing operation overpotentials and boosting battery lifetimes. The improved stability and well-defined electrode morphology also enabled detailed studies on the formation and decomposition of Li2O2. To summarize, this dissertation presented the synthesis and characterization of inorganic nanostructured materials for advanced energy storage. On a practical level, the new types of materials allow for the immediate advancement of the energy storage technology. On a fundamental level, it helped to better understand reaction chemistries and fading mechanisms of battery electrodes. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

FABRICATION OF STRUCTURED POLYMER AND NANOMATERIALS FOR ADVANCED ENERGY STORAGE AND CONVERSION

Liu, Kewei January 2018 (has links)
No description available.
4

Solid-State and Diffusional Nuclear Magnetic Resonance Investigations of Oxidatively Stable Materials for Sodium Batteries / Development of Oxidatively Stable Battery Materials

Franko, Christopher J. January 2022 (has links)
This thesis focuses on the development of oxidatively stable cathode and electrolyte materials for sodium-based battery systems. This is primarily achieved through the use of solid-state nuclear magnetic resonance (ssNMR) and pulsed-field gradient (PFG) NMR spectroscopy. ssNMR is used to diagnose the primarily failure mode of the NaOB. It is found through a combined 23Na and 19F study that the main discharge product of the cell, NaO2, oxidizes both the carbon and polyvinylidene fluoride (PVDF) binder of the cathode to produce parasitic Na2CO3 and NaF. In a subsequent study, Ti4O7-coated carbon paper cathodes are implemented in an attempt to stabilize NaO2. The 23Na triple quantum magic angle spinning (3QMAS) and 1H to 23Na dipolar heteronuclear multiple quantum correlation (23Na{1H} D-HMQC) experiments are used to diagnose the failure modes of carbon-coated, and Ti4O7-coated cathodes. It is found that electrochemically formed NaO2 is significantly more stable in Ti4O7-coated cathodes, leading to longer lifetime NaOBs. Oxidatively stable electrolyte materials are also examined. Lithium and sodium bis(trifluoromethansulfonyl)imide (TFSI) in adiponitrile (ADN) electrolytes exhibit extreme oxidative resistance, but are unusable in modern cells due to Al corrosion by TFSI, and spontaneous ADN degradation by Li and Na metal. PFG NMR is used to investigate the transport properties of LiTFSI in ADN as a function of LiTFSI concentration. By measuring the diffusion coefficient of Li+ and TFSI as a function of diffusion time (Δ), diffusional behaviour is encoded as a function of length scale to study the short- and long-range solution structure of the electrolyte. It is found that at high concentrations, LiTFSI in ADN transports Li+ primarily through an ion-hopping mechanism, in contrast to the typical vehicular mechanism observed at low concentrations. This suggests significant structural changes in solution at high concentrations. The NaTFSI in ADN analogue is examined for its electrochemical properties in Na-ion and Na-O2 batteries. It is found that the oxidative resistance of ADN to Na metal is significantly increased at high concentrations, leading to reversible Na deposition and dissolution in cyclic voltammetry (CV) experiments. Linear sweep voltammetry (LSV) and chronoamperometry (CA) experiments on Al current collectors show that Al corrosion by TFSI is similarly suppressed at high concentration. This culminates in high concentration NaTFSI in ADN being able to reversibly intercalate Na3V2(PO4)2F3 (NVPF) cathodes in SIB half-cells for multiple cycles. The knowledge gained from exploring oxidatively stable cathode and electrolyte materials can be used in tandem for the development of a longer lifetime, more oxidatively stable, NaOB in the future. / Thesis / Doctor of Philosophy (PhD) / The continued development of rechargeable batteries is paramount in reducing the world’s reliance on fossil fuels, as they allow for the storage of electrical energy produced by renewable sources. This work primarily examines sodium-based batteries systems, such as the sodium-oxygen battery (NaOB) and sodium-ion battery (SIB), which are possible alternatives to the currently used lithium-ion battery (LIB) system. In order to produce energy, NaOBs produce sodium superoxide (NaO2) during the discharge process, which is formed on the carbon cathode. However, NaO2 is inherently unstable to carbon materials, causing degradation of the battery overtime. Ti4O7 is investigated as a stable coating material in NaOBs, used to coat the carbon cathode to make the system more stable to NaO2 degradation. The degradation processes in NaOBs are characterized by solid state nuclear magnetic resonance (ssNMR) spectroscopy, which uses strong superconducting magnets to probe the magnetic properties of, and consequently identify, the chemical species formed within the battery. It is found that the addition of the Ti4O7 coating inhibits NaO2 degradation, producing longer lifetime NaOBs. Subsequently, both Li-bis(trifluoromethansulfonyl)imide (LiTFSI), and NaTFSI, in adiponitrile (ADN) electrolytes are examined for their use in LIBs and SIBs, respectively. Electrolytes facilitate stable ion transport within the cell, and ADN electrolytes specifically allow for the use of higher voltage cathode materials, which can result in a higher energy density battery. The transport properties of LiTFSI in ADN electrolytes are studied by a pulsed-field gradient (PFG) NMR technique, that allows for the measurement of the rate of ion transport in the electrolyte. It is found that the mechanism of ion transport significantly depends on electrolyte concentration, which suggests significant changes to the electrolyte solution structure at high concentration. The electrochemical ramifications of this are studied for the NaTFSI in ADN electrolyte in SIBs. It is found that the electrolyte becomes substantially more stable at high concentrations, leading to more favourable charging and discharging behaviours when tested in SIBs. The work presented in this thesis illustrates the development of more stable, longer lifetime, batteries over a number of cell chemistries, using a variety of NMR and electrochemical characterization techniques.
5

The O2 electrode performance in the Li-O2 battery

Liu, Jia January 2015 (has links)
Li-O2 batteries have been attracting increasing attention and R&D efforts as promising power sources for electric vehicles (EVs) due to their significantly higher theoretical energy densities compared to conventional Li-ion batteries. The research presented in this thesis covers the investigation of factors influencing the decomposition of Li2O2, the development of highly active electrocatalysts, and the design of low-cost and easy-operation binder-free O2 electrodes for Li-O2 batteries. Being the main technique, SR-PXD was used both as a continuous light source to advance the electrochemical decomposition of Li2O2 under the X-ray illumination and an operando tool that allowed us to probe the degradation of Li2O2. Since XRD was intensively used in my thesis work, the effect of X-ray irradiation on the stability of Li2O2 was studied. The accelerating effect of X-rays on the electrochemical decomposition of Li2O2 was, for the first time, explored. The electrochemical decomposition rate of Li2O2 was proportional to the X-ray intensity used. It is proposed that the decomposition might involve a three-step reaction with [Li2O2]x+ and Li2-xO2* as intermediates, which followed pseudo-zero-order kinetics. Then, three electrocatalysts (Pt/MNT, Ru/MNT and Li2C8H2O6) were developed, which exhibited good electrocatalytic performances during the OER. Their activities were evaluated by following the Li2O2 decomposition in electrodes during the charging processes. In addition, the time-resolved OER kinetics for the electrocatalyst-containing Li-O2 cells charged galvanostatically and potentiostatically was systematically investigated using operando SR-PXD. It was found that a small amount of Pt or Ru decoration on the MNTs enhanced the OER efficiency in a Li-O2 cell. The Li2O2 decomposition of an electrode with 5 wt% Pt/MNT, 2 wt% Ru/MNT or Li2C8H2O6 in a Li-O2 cell followed pseudo-zero-order kinetics. Finally, a novel binder-free NCPE for Li-O2 batteries was presented. It displayed a bird’s nest microstructure, which could provide the self-standing electrode with considerable mechanic durability, fast O2 diffusion and enough space for the discharge product deposition. The NCPE contained N-containing functional groups, which may promote the electrochemical reactions.
6

Electrochemical Energy Conversion and Storage through Solar Redox Flow and Superoxide Batteries

McCulloch, William David 26 July 2018 (has links)
No description available.

Page generated in 0.1674 seconds