• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação dos efeitos da utilização da combustão enriquecida com oxigênio em turbinas a gás industriais de um eixo

Maidana, Cristiano Frandalozo January 2011 (has links)
Muitas áreas da indústria utilizam substanciais somas de energia térmica, geralmente obtida pela combustão de óleo, gás ou carvão. Na queima destes combustíveis geralmente é utilizado ar como oxidante, que é constituído aproximadamente por 21% de O2 e 79% de N2, em volume. Em muitos casos, os processos de combustão podem ser enriquecidos com o uso de oxidantes que possuem concentrações de oxigênio maior que a existente no ar. Isto é conhecido como combustão enriquecida com oxigênio (OEC) que pode trazer vários benefícios como a redução do consumo de combustíveis, aumento da energia térmica disponível, redução no volume dos gases de combustão, baixo custo de adaptação dos equipamentos existentes, entre outros. Com este cenário, o presente trabalho investiga o uso da combustão enriquecida com oxigênio em uma turbina a gás industriais de um eixo. O equipamento foi modelado termodinamicamente e com a consideração que os gases de combustão formados se encontram em equilíbrio químico. Dessa forma, são estudadas três formas de operação da turbina a gás com o uso do processo de enriquecimento da combustão, que são: 1) vazão de ar de admissão constante, 2) potência líquida constante com rotação fixa e 3) potência líquida constante com rotação variável. Os resultados mostram que pode ser obtido um aumento de até 143% na potência líquida e de 24% no rendimento térmico do ciclo para o caso 1. Entretanto, é necessária uma substancial soma de oxigênio para sustentar o processo. / Many industry areas use large amounts of thermal energy, usually obtained by burning oil, gas or coal. The combustion of these fuels generally used air as an oxidant, which consists of approximately 21% O2 and 79% N2, in volume. In many cases, combustion processes can be enriched with the use of oxidants with higher concentration of oxygen than present in the air. This is known as oxygen-enhanced combustion (OEC), which can provide several benefits such as reduced fuel consumption, increased thermal energy availability, reduction in flue gas volume, low retrofitting cost and others. With this background, this work investigates the use of oxygen-enhanced combustion in heavy duty single-shaft gas turbine. The equipment was thermodynamically modeled and the consideration that the combustion gases are in chemical equilibrium. Thus, three possible ways of implementation of the enrichment process of combustion were studied, which are: 1) constant intake air flow, 2) constant net power with fixed rotation and 3) constant net power with variable speed. The results showed that one can be obtained up to 143% increase in net power and 24% in thermal efficiency of the cycle in case 1. However, it’s necessary a substantial amount of oxygen to sustain the OEC process.
2

Avaliação dos efeitos da utilização da combustão enriquecida com oxigênio em turbinas a gás industriais de um eixo

Maidana, Cristiano Frandalozo January 2011 (has links)
Muitas áreas da indústria utilizam substanciais somas de energia térmica, geralmente obtida pela combustão de óleo, gás ou carvão. Na queima destes combustíveis geralmente é utilizado ar como oxidante, que é constituído aproximadamente por 21% de O2 e 79% de N2, em volume. Em muitos casos, os processos de combustão podem ser enriquecidos com o uso de oxidantes que possuem concentrações de oxigênio maior que a existente no ar. Isto é conhecido como combustão enriquecida com oxigênio (OEC) que pode trazer vários benefícios como a redução do consumo de combustíveis, aumento da energia térmica disponível, redução no volume dos gases de combustão, baixo custo de adaptação dos equipamentos existentes, entre outros. Com este cenário, o presente trabalho investiga o uso da combustão enriquecida com oxigênio em uma turbina a gás industriais de um eixo. O equipamento foi modelado termodinamicamente e com a consideração que os gases de combustão formados se encontram em equilíbrio químico. Dessa forma, são estudadas três formas de operação da turbina a gás com o uso do processo de enriquecimento da combustão, que são: 1) vazão de ar de admissão constante, 2) potência líquida constante com rotação fixa e 3) potência líquida constante com rotação variável. Os resultados mostram que pode ser obtido um aumento de até 143% na potência líquida e de 24% no rendimento térmico do ciclo para o caso 1. Entretanto, é necessária uma substancial soma de oxigênio para sustentar o processo. / Many industry areas use large amounts of thermal energy, usually obtained by burning oil, gas or coal. The combustion of these fuels generally used air as an oxidant, which consists of approximately 21% O2 and 79% N2, in volume. In many cases, combustion processes can be enriched with the use of oxidants with higher concentration of oxygen than present in the air. This is known as oxygen-enhanced combustion (OEC), which can provide several benefits such as reduced fuel consumption, increased thermal energy availability, reduction in flue gas volume, low retrofitting cost and others. With this background, this work investigates the use of oxygen-enhanced combustion in heavy duty single-shaft gas turbine. The equipment was thermodynamically modeled and the consideration that the combustion gases are in chemical equilibrium. Thus, three possible ways of implementation of the enrichment process of combustion were studied, which are: 1) constant intake air flow, 2) constant net power with fixed rotation and 3) constant net power with variable speed. The results showed that one can be obtained up to 143% increase in net power and 24% in thermal efficiency of the cycle in case 1. However, it’s necessary a substantial amount of oxygen to sustain the OEC process.
3

Avaliação dos efeitos da utilização da combustão enriquecida com oxigênio em turbinas a gás industriais de um eixo

Maidana, Cristiano Frandalozo January 2011 (has links)
Muitas áreas da indústria utilizam substanciais somas de energia térmica, geralmente obtida pela combustão de óleo, gás ou carvão. Na queima destes combustíveis geralmente é utilizado ar como oxidante, que é constituído aproximadamente por 21% de O2 e 79% de N2, em volume. Em muitos casos, os processos de combustão podem ser enriquecidos com o uso de oxidantes que possuem concentrações de oxigênio maior que a existente no ar. Isto é conhecido como combustão enriquecida com oxigênio (OEC) que pode trazer vários benefícios como a redução do consumo de combustíveis, aumento da energia térmica disponível, redução no volume dos gases de combustão, baixo custo de adaptação dos equipamentos existentes, entre outros. Com este cenário, o presente trabalho investiga o uso da combustão enriquecida com oxigênio em uma turbina a gás industriais de um eixo. O equipamento foi modelado termodinamicamente e com a consideração que os gases de combustão formados se encontram em equilíbrio químico. Dessa forma, são estudadas três formas de operação da turbina a gás com o uso do processo de enriquecimento da combustão, que são: 1) vazão de ar de admissão constante, 2) potência líquida constante com rotação fixa e 3) potência líquida constante com rotação variável. Os resultados mostram que pode ser obtido um aumento de até 143% na potência líquida e de 24% no rendimento térmico do ciclo para o caso 1. Entretanto, é necessária uma substancial soma de oxigênio para sustentar o processo. / Many industry areas use large amounts of thermal energy, usually obtained by burning oil, gas or coal. The combustion of these fuels generally used air as an oxidant, which consists of approximately 21% O2 and 79% N2, in volume. In many cases, combustion processes can be enriched with the use of oxidants with higher concentration of oxygen than present in the air. This is known as oxygen-enhanced combustion (OEC), which can provide several benefits such as reduced fuel consumption, increased thermal energy availability, reduction in flue gas volume, low retrofitting cost and others. With this background, this work investigates the use of oxygen-enhanced combustion in heavy duty single-shaft gas turbine. The equipment was thermodynamically modeled and the consideration that the combustion gases are in chemical equilibrium. Thus, three possible ways of implementation of the enrichment process of combustion were studied, which are: 1) constant intake air flow, 2) constant net power with fixed rotation and 3) constant net power with variable speed. The results showed that one can be obtained up to 143% increase in net power and 24% in thermal efficiency of the cycle in case 1. However, it’s necessary a substantial amount of oxygen to sustain the OEC process.
4

Thermodynamic study of oxygen-enhanced combustion: analysis of different techniques of oxidant production

Gosselin, Gaëlle January 2013 (has links)
Thermal energy is an important resource for many industrial processes and is usually produced by combustion of hydrocarbon fuels with air. These processes could beneficiate from the use of oxygen-enhanced combustion (OEC), whose benefits (pollutants emissions reduction, fuel savings, productivity increase and volumes reduction) are already known. However, low costs oxygen production is still a challenge as the currently most used technique, cryogenics, is very energy consuming and costly. So, the present work proposes the thermodynamic analysis of two different techniques for production of oxidant required for the OEC process, the first one including air separation by polymeric membrane and the second one by PSA. Both systems were simulated on the software EES. Results show an increase of the energetic efficiency in both of the systems (from 22% to 58% in the membrane case and 66% in the PSA case) and of the exergetic efficiencies (from 18% to 48.5% and 54% respectively). A reduction of more than 60% of specific pollutants emissions was shown. The assessed techniques were shown to be energetically more attractive than cryogenics for small plants, the size limit depending on operating conditions.
5

Charakteristické parametry procesu spalování při využití vzduchu s obsahem kyslíku vyšším než 21 % / Characteristic parameters of oxygen-enhanced combustion process

Hudák, Igor January 2013 (has links)
Diplomová práce se zabývá spalováním zemního plynu při využití vzduchu s vyšším obsahem kyslíku (21–46 % kyslíku ve spalovacím vzduchu), tzv. kyslíkem obohaceným spalováním (OEC). Technologie OEC nalezla uplatnění v průmyslu, kde se jsou nároky na zvýšenou produktivitu, dosažení vyšší tepelné účinnosti, zlepšení vlastností plamene, snížení náklady, či zlepšení kvality výsledného produktu. Ačkoliv OEC přináší řadu výhod, je nutné zmínit i nevýhody jako: poškození zařízení, nestejnoměrné zahřívání, narušení plamene, zvýšené emise anebo zpětný zášleh plamene. Zkoušky proběhly na zkušebně hořáků, která umožňuje testovat hořáky nejen na plynná a kapalná paliva, ale i hořáky navržené pro kombinované spalování při maximálním výkonu hořáku 1 800 kW. Při zkouškách byl použit plynový „low-NOx“ hořák se stupňovitým přívodem paliva. V diplomové práci je popsán vliv obsahu kyslíku ve spalovacím vzduchu na emise oxidů dusíku (NOx), teplotu plamene, přenos tepla ze spalin do stěn spalovací komory, a také vlastnosti plamene, zvláště pak jeho stabilitu, tvar a rozměry. Zkoušky proběhly při výkonech 300 kW, 500 kW a 750 kW, přičemž pro výkon 750 kW proběhly testy jak při jednostupňové, tak dvoustupňové konfiguraci.
6

Parametry procesu spalování při využití vzduchu s obsahem kyslíku vyšším než 21 % / Characteristic parameters of oxygen-enhanced combustion process

Dřímal, Jiří January 2014 (has links)
The thesis is focused on the experimental investigation of the oxygen enhanced combustion technology (OEC), which uses the combustion air with higher concentration of oxygen, i.e. more than 21 %. The OEC technology is used in those industrial applications, which requires higher thermal efficiency, increased productivity, improved character of the flame, reduced equipment cost, lower volume of exhaust gases and improved product quality. Although this technology involves a number of advantages, it is appropriate to mention some of its disadvantages such as refractory damage, inconsistent heating, increased pollutant emission or flame disturbance and/or flashback. The combustion tests of OEC were carried out at the burners testing facility that enables to test many types of burners (gaseous, liquid, or combined). The two-staged low-NOx burner fired by natural gas was used during the tests. The observed parameters include the effect of oxygen concentration in the combustion air on the NOx emissions, heat flux into the wall of the combustion chamber, in-flame temperature distribution in the horizontal symmetry plane of the combustion chamber and also the shape and dimensions of the flame. The combustion tests of the air-enrichment, air-oxy/fuel and O 2 lancing OEC methods were carried out at the burner thermal input of 750 kW and air excess of 1,1 for two combustion regimes, namely one-staged and two-staged fuel supply.
7

Modelování procesu spalování při využití vzduchu s obsahem kyslíku vyšším než 21 % / Modelling of oxygen-enhanced combustion process

Naď, Martin January 2014 (has links)
The main purpose of the master´s thesis is the experimental study and the mathematical modelling of the combustion process in which the combustion air is enriched with the high-purity oxygen, i.e. the oxygen content is more than 21 %. This combustion technology is called as the oxygen-enhanced combustion (OEC). Since the experimental work required the manipulation with the pure oxygen, a part of the thesis is focused on risks and necessary safety associated therewith. The detailed description of the combustion chamber as well as of the components necessary for the operation of OEC is included. The main part of the thesis is the computational model of the combustion chamber and the simulation of OEC using CFD methods. The numerical results were then compared with the experimental data acquired during the combustion tests, namely the heat flux distribution along the combustion chamber and the distribution of in-flame temperatures in the horizontal symmetry plane of the chamber.

Page generated in 0.0916 seconds