• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-aqueous polyvanadate chemistry

Bakri, Ridla January 1998 (has links)
No description available.
2

Topochemical Manipulation of Layered Perovskites

Josepha, Elisha A 04 August 2011 (has links)
Topochemical strategies, techniques that allow one to effectively manipulate the structures of nonmolecular solids once a crystal lattice is established, are effective in the low temperature (< 500 °C) modification of solid state structures, allowing the preparation of nonmolecular compounds not accessible by standard synthetic routes. Some of the techniques, ion exchange, intercalation/deintercalation, have proven to be excellent synthetic methods for preserving specific frameworks. The combination of these techniques can allow one to create a multistep approach that can be used to design new compounds with interesting properties. As an expansion to the field of topotactic reactions, a multistep approach was developed towards the synthesis of the new compounds (A xM0.5Cly)LaNb2O7 (where A = Rb, Cs; M = Fe, Ni; x ≈ 1.5;y ≈ 1) at temperatures below 400oC. The first reaction step involved the ion exchange of the host materials (ALaNb2O7, A = Rb, Cs) to form the products M0.5LaNb2O7 (where M = Fe, Ni), a structure open to further chemistry. The next step involved reductive intercalation with Rb or Cs metal to form the air sensitive mixed-valence products with the nominal compositions, A1.5M0.5LaNb2O7. The last step involved the oxidative intercalation of chlorine using chlorine gas to obtain the final compounds. This multistep approach is a design to form mix-metal halide layers, specifically those with divalent cations, within layered perovskites, opening the doors to compounds that can have interesting properties. This reaction series was also applied to the tantalate layered oxides, leading to the formation of the new compound Ni 0.5LaTa2O7 through ion exchange. The further multistep topochemical manipulation of this new compound was not successful and was indicative of the difference in chemical behavior of the tantalates versus the niobates. We have also investigated the oxidative intercalation of halogens into a series of Ruddlesden-Popper (R-P) ruthenate oxides with the formula Ae n+1RunO3n+1 (Ae = Ca, Sr; n = 1, 2, 3) using several sources of fluorine, chlorine, and bromine. A new method was developed to intercalate chlorine into layered systems; this new approach avoids the use of chlorine gas which is highly toxic. The new phase Sr3Ru2O7Cl0.7 was synthesized by the new method and further topotactic manipulations were explored. The chemistry was not limited to the n = 2 phase but was also applied to the n = 3 phase, Sr4Ru3O10.
3

Síntese, modificação, caracterização e mecanismos de formação de semicondutores fotoativos a base de bismuto / Synthesis, modification, characterization and mechanisms of formation of bismuth-based photo semiconductors

Torres, Carolina Ferreira 10 May 2019 (has links)
Este trabalho descreve a síntese de semicondutores a base de bismuto [Bi2O3, BiOX (X= Cl, Br ou I)] e óxidos de ferro (FexOy), a modificação por tratamento hidrotérmico e a formação de compostos híbridos de BiOX e Bi2O2CO3 ou Fe3O4 e a aplicação destes na degradação fotocatalítica de soluções de rodamina B e de fenol. A formação de vacâncias de oxigênio (VO) em estruturas de BiOCl e Bi2O2CO3 foi promovida por processo de sonicação. Os diferentes oxihaletos de bismuto, polimorfos de óxidos de bismuto e de óxidos de ferro foram precipitados pela elevação de pH do meio precursor utilizando soluções aquosas de monoisopropanolamina (MIPA), diisopropanolamina (DIPA), triisopropanolamina (TIPA), hidróxidos de sódio, potássio ou de amônio. Por meio de caracterização das propriedades físico-químicas, estruturais e morfológicas foram propostos mecanismos atentando-se a participação da base utilizada para formação e atividade catalítica dos compostos. Foram obtidas as fases &#945;-Bi2O3 quando utilizado bases minerais e MIPA e &#947;-Bi2O3 utilizando-se TIPA, fases amorfas ou mistas foram obtidas com as demais bases. Os oxihaletos de bismuto se formaram independente da base utilizada na precipitação, apresentando diferenças estruturais. O processo de sonicação levou a formação de VO em estruturas de BiOCl e Bi2O2CO3 que foi verificado por Raman e espectroscopia de fotoelétrons excitados por raios X. Na precipitação de íons Fe2+ a utilização de MIPA levou à formação de magnetita, enquanto as demais bases levou a formação de misturas de óxidos de ferro. O tratamento hidrotérmico levou a híbridos de BiOX e magnetita, que apresentaram comportamento magnético, e de BiOCl e Bi2O2CO3, além de oxibrometos ricos em bismuto. Todos os materiais apresentaram atividade fotocatalítica na degradação de soluções de fenol e/ou rodamina B, as caracterizações de espectroscópicas, área superficial e potencial Zeta foram utilizadas para explicar as diferenças nestas atividades. / This study describes the synthesis of semiconductors based on bismuth [Bi2O3, BiOX (X = Cl, Br or I)] and iron oxides (FexOy), the modification by hydrothermal treatment and the formation of hybrids of BiOX and Bi2O2CO3 or Fe3O4, and the application of the materials to the photocatalytic degradation of rhodamine B and phenol solutions. The formation of oxygen vacancies (VO) in the structures of BiOCl and Bi2O2CO3 was promoted by a sonication process. The different bismuth oxyhalides, polymorphs of bismuth oxides and iron oxides were precipitated by raising the precursor pH level using aqueous solutions of monoisopropanolamine (MIPA), diisopropanolamine (DIPA), triisopropanolamine (TIPA), sodium, potassium or ammonium hydroxides. By performing the characterization of physico-chemical, structural and morphological properties, mechanisms were proposed considering the participation of the base on the formation of the compounds and their catalytic activity. The &#945;- Bi2O3 phase was obtained when mineral bases and MIPA were used; the &#947;- Bi2O3 was formed when using TIPA; amorphous or mixed phases were obtained when using the other bases. Bismuth oxyhalides were formed independently of the base used for precipitation, showing structural differences. The sonication process led to the formation of VO in structures of BiOCl and Bi2O2CO3which was verified by Raman and X-ray excited photoelectron spectroscopies. For Fe2+ ion precipitation, the use of MIPA led to the formation of magnetite, while the other bases led to the formation of mixtures of iron oxides. The hydrothermal treatment led to hybrids of BiOX and magnetite, which presented magnetic behavior, and BiOCl and Bi2O2CO3, in addition to bismuth-rich oxybromides. All the materials showed photocatalytic activity in the degradation of phenol and / or rhodamine B solutions. Characterization techniques such as spectroscopy, surface and Zeta potential were used to explain as the different photocatalytic activities.
4

Optimisation and application of plant-based waste materials for the remediation of selected trace metals (Cd, Pb and Mn) and Oxyhalides (Bro3, CIO3 and IO3) in aqueous system

Abdulkadir, Muhammed Ibrahim 11 1900 (has links)
The research work is directed towards the investigation, optimization and application of some plant-based waste materials for the removal of some toxic trace metals (Cd, Pb and Mn) as well as selected oxyhalides (CIO3-,IO3- and BrO3-) in aqueous system. Waste materials from three plants; Athrixia philicoide, an indigenous bush tea; the outer covering peels of butternut Squash (Cucurbita Moschata) and pineapple (Ananas comosus) were evaluated for their sorption efficiency of the selected metals. batch and continuous experimental processes as well as conditions that might influence the sorption of the metals were investigated. These conditions include effects of pH sorption time, amount of adsorbent, volume of the aqueous medium, amount of metals etc. Qualitative and quantitative analysis of metal ions in solution was carried out using the ion chromatograph (IC) while the functional group identification present in waste materials was established using the Fourier Transform infr-red spectroscopy (FTIR), Quantitative biosorption equilibrium of 98.99% was reached within 6h at pH 6 and 100 ppm concentration of Pb metal with Athrixiaphilicoide under 30 min contact time. Applicability of the sorption process was tested on wastewater. Results revealed that > 99.93 %; 84.5 % and 64.3 % sorption efficiency was obtained for Mn, Cd and Pb respectively at pH 7 using Ananas Comosus adsorbent. For Athrixia philicoide, sorption efficiency from spiked wastewater ranged from 99.98 % for Cd; 99.96 % for Mn and 82.5 % adsorption for Pb at pH 7. For Juglans Cinerea, wastewater sorption efficiency varied between 78.76 %, 94.50 % and 96.50 % for Cd, Mn and Pb respectively at pH6. Results from the optimized method revealed the applicability of the method to environmental water samples. Possible large scale and industrial/commercial application of developed materials and methods would be explored. ) in aqueous system. Waste materials from three plants; Athrixia philicoide, an indigenous bush tea; the outer covering peels of butternut Squash (Cucurbita Moschata) and pineapple (Ananas comosus) were evaluated for their sorption efficiency of the selected metals. Batch and continuous experimental processes as well as conditions that might influence the sorption of the metals were investigated. These conditions include effects of pH, sorption time, amount of adsorbent, volume of the aqueous medium, amount of metals etc. Qualitative and quantitative analysis of metal ions in solution was carried out using the ion chromatograph (IC) while the functional group identification present in waste materials was established using the Fourier Transform infra-red spectroscopy (FTIR). Quantitative biosorption equilibrium of 96.99 % was reached within 6h at pH 6 and 100 ppm concentration of Pb metal with Athrixia philicoide under 30 min contact time. Cd and Mn adsorption by the same adsorbent under similar condition were less than 50 % for individual metal evaluation experiment. However, > 99 % adsorption was achieved with Cd in a mixture of the three (3) evaluated metals. Highest adsorption of 93 % of Pb was achieved with the Butternut Squash peel (Cucurbita moschata) at the optimal sorption pH of 6 followed by quantitative sorption of 99.2 % of Mn while Cd recorded a sorption level of 45 % all at 6 pH. The sorption efficiency of Pb, Cd and Mn using pineapple peels (Ananas comosus) also at the optimal sorption conditions of (pH 6, 30 min contact time and 100 ppm metal concentration) ranged from 98.7 %, 100 % and 99.90 % respectively. / Enviromental Science / M.Sc (Enviromental Science)
5

Optimisation and application of plant-based waste materials for the remediation of selected trace metals (Cd, Pb and Mn) and Oxyhalides (Bro3, CIO3 and IO3) in aqueous system

Abdulkadir, Muhammed Ibrahim 11 1900 (has links)
The research work is directed towards the investigation, optimization and application of some plant-based waste materials for the removal of some toxic trace metals (Cd, Pb and Mn) as well as selected oxyhalides (CIO3-,IO3- and BrO3-) in aqueous system. Waste materials from three plants; Athrixia philicoide, an indigenous bush tea; the outer covering peels of butternut Squash (Cucurbita Moschata) and pineapple (Ananas comosus) were evaluated for their sorption efficiency of the selected metals. batch and continuous experimental processes as well as conditions that might influence the sorption of the metals were investigated. These conditions include effects of pH sorption time, amount of adsorbent, volume of the aqueous medium, amount of metals etc. Qualitative and quantitative analysis of metal ions in solution was carried out using the ion chromatograph (IC) while the functional group identification present in waste materials was established using the Fourier Transform infr-red spectroscopy (FTIR), Quantitative biosorption equilibrium of 98.99% was reached within 6h at pH 6 and 100 ppm concentration of Pb metal with Athrixiaphilicoide under 30 min contact time. Applicability of the sorption process was tested on wastewater. Results revealed that > 99.93 %; 84.5 % and 64.3 % sorption efficiency was obtained for Mn, Cd and Pb respectively at pH 7 using Ananas Comosus adsorbent. For Athrixia philicoide, sorption efficiency from spiked wastewater ranged from 99.98 % for Cd; 99.96 % for Mn and 82.5 % adsorption for Pb at pH 7. For Juglans Cinerea, wastewater sorption efficiency varied between 78.76 %, 94.50 % and 96.50 % for Cd, Mn and Pb respectively at pH6. Results from the optimized method revealed the applicability of the method to environmental water samples. Possible large scale and industrial/commercial application of developed materials and methods would be explored. ) in aqueous system. Waste materials from three plants; Athrixia philicoide, an indigenous bush tea; the outer covering peels of butternut Squash (Cucurbita Moschata) and pineapple (Ananas comosus) were evaluated for their sorption efficiency of the selected metals. Batch and continuous experimental processes as well as conditions that might influence the sorption of the metals were investigated. These conditions include effects of pH, sorption time, amount of adsorbent, volume of the aqueous medium, amount of metals etc. Qualitative and quantitative analysis of metal ions in solution was carried out using the ion chromatograph (IC) while the functional group identification present in waste materials was established using the Fourier Transform infra-red spectroscopy (FTIR). Quantitative biosorption equilibrium of 96.99 % was reached within 6h at pH 6 and 100 ppm concentration of Pb metal with Athrixia philicoide under 30 min contact time. Cd and Mn adsorption by the same adsorbent under similar condition were less than 50 % for individual metal evaluation experiment. However, > 99 % adsorption was achieved with Cd in a mixture of the three (3) evaluated metals. Highest adsorption of 93 % of Pb was achieved with the Butternut Squash peel (Cucurbita moschata) at the optimal sorption pH of 6 followed by quantitative sorption of 99.2 % of Mn while Cd recorded a sorption level of 45 % all at 6 pH. The sorption efficiency of Pb, Cd and Mn using pineapple peels (Ananas comosus) also at the optimal sorption conditions of (pH 6, 30 min contact time and 100 ppm metal concentration) ranged from 98.7 %, 100 % and 99.90 % respectively. / Enviromental Science / M.Sc (Enviromental Science)
6

Estudo do campo cristalino em oxihaletos dopados com íons Eu3+

Portela, Irlan Marques Cunha 15 March 2013 (has links)
In this work we applied to a series of oxyhalides crystals, namely, GdOBr, LaOI, GdOCl, LaOCl, YOCl and LaOBr, all doped ion Eu3 +, the point charge electrostatic model (PCEM), the simple overlap model (SOM) and method of equivalent nearest neighbors (MENN), with the objective of discussing the magnitude of the charges of the ions in this halogens series. Using the local structure of luminescent site, calculations were made of the crystal field parameters and splitting of the 7F1 level. The point charge electrostatic model, as expected, led to satisfactory predictions only from the qualitative point of view. The simple overlap model and the method gave satisfactory predictions to all quantities uce the experimental splitting energy level 7F1. It is shown that the effect of O2- ions is dominant in the calculation of crystal field parameters and charge factors of the halogens has been always smaller than those of O2- ions, although in some cases the NN charge factors was greater than the their valence, when the SOM is applied. This is not completely understood up to now. / Neste trabalho foram aplicados a uma serie de cristais oxihaletos, a saber, GdOBr, LaOI, GdOCl, LaOCl, YOCl e LaOBr, todos dopados com o ion Eu3+, o Modelo Eletrostatico de Cargas Pontuais, o Modelo de Recobrimento Simples e o Metodo dos Vizinhos Equivalentes, com o objetivo de discutir a magnitude das cargas dos ions halogenios nesta serie. Usando a estrutura local do sitio luminescente, foram feitos calculos de parametros do campo cristalino (Bkq) e do desdobramento do nivel 7F1 ( ´E). O modelo eletrostatico de cargas pontuais, como esperado, levou a resultados satisfatorios apenas do ponto de vista qualitativo. Ja com o modelo de recobrimento simples e com o metodo foi possivel reproduzir ´E. As previsoes mostram que o efeito dos ions O2- e dominante nas previsoes dos Bkq e ´E e os fatores de carga dos halogenios sao muito menores que os dos ions O2-, embora em alguns casos a carga dos primeiros vizinhos tenha sido maior que a valencia respectiva, quando o modelo de recobrimento simples e aplicado, o que ainda nao e completamente entendido.

Page generated in 1.0873 seconds