• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spatial and temporal characteristics of C2-C15 hydrocarbons and receptor modeling in the air of urban Kaohsiung, Taiwan

Lai, Chia-hsiang 16 June 2004 (has links)
The concentrations of seventy-one hydrocarbons (HC) from C2 to C15 were measured simultaneously at two sites in Kaohsiung city in the morning (07-10), the afternoon (13-16), and the evening (18-21) on 14 days in spring 2003. Results show that the most abundant species of Kaohsiung¡¦s air is toluene (43.36-54.49 £gg m-3), followed by i-pentane, 1,2,4-trimethylbenzene, benzene, n-butane, propane and acetylene, in the range 10.36¡V17.11 £gg m-3. The concentrations of 14 halocarbons are in the range 0.25¡V4.57 £gg m-3. Alkanes (around 44.8%) represent the largest proportion of the total HC, followed by aromatics (35.1%), alkenes (15.5%) and halocarbons (5.4%). The afternoon HC concentrations are much lower than those in the morning and at night, due to relatively intense photochemical reaction and favorable dispersion conditions from noon to afternoon. Notable increases in daily HC concentrations are consistent with high temperature, and low HC concentrations on Sunday coincide with low traffic volume. Photochemical activity is investigated, and HC concentrations are found to decline as the NO2/NOx ratio increases. Correlation analyses imply that vehicle exhaust is the dominant source of atmospheric hydrocarbons in Kaohsiung. The profiles of traffic exhausts were also measured for 25 HC species during the morning and afternoon rush hours on four different days in all three traffic tunnels in Kaohsiung City. Results show that VOC concentrations increase with traffic flow rate, and emission profiles in the three tunnels are mostly in the range C2 ¡V C6. Besides the traffic conditions and vehicle type, the pattern of emissions in each tunnel was also influenced by other factors, such as vehicle age, nearby pollution sources, and the spatial or temporal variation of HC in the urban atmosphere. The ozone formation potential (OFP) in each tunnel was assessed based on the maximum incremental reactivities of the organic species, demonstrating that OFP increases with traffic flow rate. Vehicle distribution influences the contributions of organic group to OFP in a tunnel. Meanwhile, when ranked in descending order of contribution to OFP in all tunnels, the organic groups followed the sequence alkenes, aromatics, and alkanes. The possible source categories affecting the atmospheric HC species were further analyzed using factor analysis. Results showed that the major sources of ambient HC at the Nan-Chie and Hsiung-Kong sites are: vehicle exhaust, petrol/diesel exhaust, industrial processes (for example, plastic/rubber process), combustion exhaust, solvent fugitive or business/consume exhaust. Based on the results of factor analysis, source profiles (or fingerprints) were selected and receptor modeling was conducted based on chemical mass balance (CMB). Results of receptor modeling indicated that, at Nan-Chie site, vehicle exhaust (46.33% and 56.36%) represent the largest proportion of total HC, followed by industrial processes (29.63% and 22.37%) in the morning (07-10) and the evening (18-21), respectively; but were industrial process (40.39%) and solvent fugitive exhaust (30.61%) in the afternoon (13-16). Similarly at Hsiung-Kong site, vehicle exhaust (around 46.19% and 49.29%) represent the largest proportion of total HC, followed by industrial processes (23.19% and 26.11%) in the morning and evening, respectively; but were solvent fugitive exhaust (38.85%), vehicle exhaust (28.95%) and industrial process (25.19%) in the afternoon. It is evident that relatively low traffic volumes in the afternoon at both sites reduce the contribution of traffic exhaust to ambient HC.
12

Refinement of PTR-MS methodology and application to the measurement of (O)VOCs from cattle slurry

House, Emily January 2009 (has links)
Oxygenated volatile organic compounds ((O)VOCs) contribute to ozone formation, affect the oxidising capacity of the troposphere and are sources of growth, and in some cases formation, of aerosols. It is therefore important to identify and quantify sources of (O)VOCs in the troposphere. In the late 1990s a unique technique for quantification of organic trace gas species, proton transfer reaction mass spectrometry (PTR-MS) was developed. PTR-MS potentially offers rapid response and high sensitivity without the need for sample pre-concentration. Concentrations can be derived from the PTR-MS either by calibration or can be calculated from measured ion count rates and kinetic considerations. In this work, the methodology of PTR-MS application is critically assessed. The uncertainties and inaccuracies associated with each parameter employed in the calculation of concentrations are reviewed. This includes a critical appraisal of models for the calculation of the collisional rate constant currently applied in the field of PTR-MS. The use of a model to account for the effects of the electric field, available in the literature but not previously applied to the PTR-MS, is advocated. Collisional rate constants employing each of the models discussed have been calculated for the reactions of H3O+ with over 400 molecules for PTR-MS. In PTR-MS it cannot be assumed that the product ion occurs only at the protonated non-dissociated mass. Few product distributions obtained from PTR-MS are cited in the literature, and even then the reaction chamber conditions (pressure, temperature and electric field strength) are not always specified. A large volume of product distributions for trace gases with H3O+ in select ion flow tube mass spectrometry (SIFT) exists in the literature and is reviewed. In SIFT, no electric field is applied to the reaction chamber and the extent and even nature of fragmentation can differ in PTR-MS. In addition to the application of an electric field, the energy in the reaction chamber can be increased by increasing the temperature or by variation of the reagent ion. In this work, the increase in energy via the three methods is approximated to enable a comparison of product distributions. The review of product distributions in PTR-MS, select ion flow drift tube mass spectrometry (SIFDT), variable temperature select ion flow tube mass spectrometry (VT-SIFT), SIFT, proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS), proton transfer reaction ion trap mass spectrometry (PTR-ITMS) and electron ionisation mass spectrometry (EI-MS) is used alongside thermodynamic considerations to collate a list of potential contributors to a range of mass to charge ratios (m/z) in the PTR-MS. The need for further measurements of product distributions as a function of temperature, pressure and electric field strength for a wider range of (O)VOCs is highlighted. This enables dissociation to be better used as a tool for compound identification rather than being considered a hindrance. The collation of likely product distributions is applied to identify possible contributors to m/z observed during PTR-MS measurements of emission from cattle slurry. Field measurements were made during fertilisation of a grassland site south of Edinburgh in 2004 and 2005 and in laboratory-based measurements in 2006. Contextual reasoning, previous measurements and isotope ratios are used to narrow the list of possible contributors. Large concentrations of m/z cautiously identified as alcohols followed by a latter peak in carboxylic acids were observed during laboratory measurements. Increases in the corresponding m/z were also observed during the fertilisations. Other tentatively identified compounds emitted included phenol, methyl phenol, trimethylamine, and various sulphur containing compounds.
13

The characterization of regional ozone transport

Dionisio, Mariana Costa 11 October 2010 (has links)
Among the most ubiquitous and persistent air quality problems facing urban areas are high concentrations of gas phase oxidants and fine particulate matter. Ozone and particulate matter concentrations in urban areas are significantly influenced by other factors in addition to local emissions, such as regional transport spanning distances as large as 1000 kilometers. Despite the importance of regional transport in meeting air quality standards, to date most analyses of regional transport have focused only on short duration episodes, or semi-quantitative assessments. The development and evaluation of seasonal, quantitative assessments of regional pollutant transport, based on modeling calculations and observational data is the topic of this dissertation. The observational data available through the Texas Air Quality Studies in 2000 and 2006 provide a unique opportunity to develop, evaluate, and improve methods for characterizing regional air pollutant transport. Measurements collected during these studies are used as the primary observational basis for characterizing regional ozone transport and to evaluate the performance of photochemical models. Results suggest that measurements (from aircraft and surface monitors) and the photochemical model provide consistent estimates of the magnitude of ozone transport. On this basis, photochemical modeling is used to determine potential impacts of regional ozone transport in Texas, under varying meteorological and photochemical conditions, as well as to characterize the dominant chemical and physical processes within urban plumes. While qualitative studies and limited quantitative analyses have been performed to assess regional ozone transport, this work includes the first detailed quantitative characterization of the importance of ozone transport over the course of an entire ozone season using both photochemical modeling and ambient data. Results demonstrate that urban plumes in Texas are capable of transporting significant amounts of ozone over distances spanning hundreds of kilometers. Furthermore, on a seasonal basis, there are a number of days characterized by high contributions from inter-city transport coinciding with high total ozone concentrations, suggesting that the role of inter-city transport will remain significant for many areas to demonstrate attainment of the NAAQS for ozone. Results also indicate that reductions in the impacts of inter-city transport are possible by decreases in emissions from source regions. / text
14

Analyses of Atmospheric Pollutants in Atlanta and Hong Kong Using Observation-Based Methods

Zhang, Jing 04 August 2004 (has links)
There are two parts in this study. The first part is to test the validity of the assumption of thermodynamic equilibrium between fine particulate (PM2.5) nitrate and ammonium and gas-phase nitric acid (HNO3(g)) and ammonia (NH3(g)). A rough estimation of the characteristic time to achieve thermodynamic equilibrium is first carried out, which suggests that PM2.5 and gas-phase species are in thermodynamic equilibrium. Then equilibrium is tested by calculating the equilibrium concentrations of HNO3(g) and NH3(g) implied by the PM2.5 inorganic composition, temperature and relative humidity observed at the Atlanta Supersite 1999 using ISORROPIA model. The second part of this study is to analyze the ground-level ozone pollution precursor relationships in Hong Kong area. Characteristics of O3 precursors are explored. Trace gases NO and CO, VOCs, absorption coefficient, temperature and solar radiation are associated with the O3 formation. Specific VOC and VOC-sources that contribute most to the formation of photochemical smog are identified. The accuracy of pollutant emission inventories for Hong Kong and PRD region is also assessed. Combined with back trajectory information, dCO/dNOy is used to define whether O3 is locally or regionally occurred. An OBM is used to investigate the relative benefits of various emission-control strategies. Generally the formation of O3 throughout much of Hong Kong area is limited by VOC, in which reactive aromatics are dominant.

Page generated in 0.0941 seconds