• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Tvorba proteinových granulí v diferencovaných buňkách kvasinkových kolonií / Formation of protein granules in differentiated cells of yeast colonies

Kočířová, Eliška January 2020 (has links)
Saccharomyces cerevisiae is a unicellular eukaryotic organism capable of forming organized multicellular communities - colonies and biofilms. During development, colonies of laboratory strains differentiate into specifically localized cell subpopulations - U and L cells, located in the upper and lower part of the colony, respectively. The U and L subpopulations of cells vary in morphology, metabolic processes and stress resistance. Protein granules are membrane-less "organelles" found in both unicellular and multicellular eukaryotic organisms. The formation of protein granules is related to the physiological state of the cell (e.g. chronological and replicative aging), but also to changing environmental conditions and to cellular responses to stress factors. A relatively large fraction of proteins relocalizes to some type of protein granule during the lifespan of the cell. Granule formation can increase fitness of cells, help them to cope with limiting energy resources, and plays a crucial role in the adaptation of cells to stress conditions. Localization of many proteins in the cell varies depending on its physiology. Therefore the specific localization of such proteins may be considered as a "marker" of a specific physiological condition. There are proteins in each type of granule that can be...

Page generated in 0.0412 seconds