• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cadmium effects on vegetables : production, physiology and biochemistry

Jinadasa, N., University of Western Sydney, Hawkesbury, Faculty of Science, Technology and Agriculture, School of Horticulture January 1998 (has links)
Cadmium (Cd) is absorbed through the lungs and the digestive tract; however, for most human non-smokers, the major route of Cd entry into the body is by ingestion. Perhaps 5% of ingested Cd is absorbed and once absorbed, Cd accumulates mostly in the liver and kidneys, where it can cause a variety of health problems. This applies equally to grazing stock. The major entry point of Cd into the food chain is therefore uptakes of traces of Cd by crop plants. This thesis focuses on Cd in vegetables. The study was conducted in an Australian context, where geogenic Cd contributions to soils are typically low. Most of the Cd in soils on Australian vegetable farms originates from materials added to boost crop production. Phosphate fertilisers were and remain the dominant Cd source. Most Australian soils are P-deficient and high rates of P fertiliser are essential for successful vegetable cropping. The P fertilisers used throughout Australia were formerly made from guano deposits mined on Pacific Islands. These contained high percentages of Cd. Current rock sources contain lower Cd concentrations. Studies showed that all the vegetable samples which contained excessive Cd concentrations were leafy vegetables, including cabbage, lettuce, silverbeet, parsley and bok choy. Cadmium impaired photosynthesis; reduced dry weight of the whole plant; slowed leaf elongation rate; decreased the length of fully expanded leaves; slowed the rate at which new leaves appeared; and altered foliar concentrations of Zn, Mn, Cu, Ca and S. These profound changes affected all parts of the plant; consequently, Cd did not affect the proportion of dry weight partitioned to the roots, stems and leaves. / Doctor of Philosophy (PhD)
2

Response of growth, yield and root characteristics of a determinate cowpea variety to variable phosphorus fertiliser and lime application rates

Maphoto, Patrina Nare January 2018 (has links)
Thesis (MSc. Agriculture(Soil Science) -- University of Limpopo, 2018 / Soil acidity is one of the abiotic stress factors that greatly limit the productivity of crops on farmers’ fields. A greenhouse study was carried out over two summer growing seasons to evaluate the effect of lime and phosphorus (P) application rates on the growth, yield and root attributes of a determinate cowpea variety on acid soil. The experiment was laid out as a 4x5 factorial arrangement with 4 replications. Treatment factors comprised of variable rates of Vaalburg dolomitic lime (0, 2, 4 and 6 t ha-1) and P (0, 15, 30, 45 and 60 kg ha-1) using single super phosphate, 10.5% P. The two treatment factors were combined resulting in a total of 20 treatment combinations. Data collected included cowpea growth parameters, crop phenology, yield attributes and root characteristics. While cowpea plants with no P application consistently gave the least plant height, stem diameter, number and length of trifoliate leaves, the 6 t ha1 lime rate appears to be completely disadvantaged for all measured parameters with generally lower values than in soil filled pots without lime application. Results showed that soil pH was increased with 6 t ha-1 lime application while soil electrical conductivity (EC), percent of organic matter (OM) and total organic carbon (TOC) were all increased with increasing P and lime rates. All measured cowpea growth attributes such as plant height, stem diameter, number of trifoliate leaves, and leaf area were significantly increased (p≤0.05) with increasing P and lime rates. During the two planting seasons, P and lime application resulted in reduced (p≤0.05) duration to flowering, pod formation and physiological maturity. The 6 t ha-1 lime application produced higher number of pods (2.50) compared to the other rates. Application rates of 45 kg P ha-1 and 6 t ha-1 of lime produced superior number of seeds per pod with high values of (13.71) and (12.85), respectively. However, cowpea root attributes namely number of nodules per plant, the third branching root diameter, angle of adventitious root, tap root diameter at 5 and 10 cm, shallow and deep score were significantly increased at moderate P rate of 30 kg P ha-1. Overall, findings of this study revealed that application of both P fertiliser and lime were able to ameliorate the negative effect of P deficiency from soil acidity on the evaluated cowpea variety and promoted increased yield. Keywords: Acid soil, grain cowpea, P fertiliser, lime, growth, root characteristics, yield / National Research Foundation (NRF) and Department of Agriculture, Forestry and Fisheries (DAFF)
3

Investigations on growth and P uptake characteristics of maize and sweet corn as influenced by soil P status : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) (Plant & soil science), Institute of Natural Resources, Massey University, Palmerston North, New Zealand

Aslam, Tehseen January 2005 (has links)
Despite being different cultivars of the same plant species (Zea mays L.), maize and sweet corn have contrasting P fertiliser recommendations in New Zealand, that are reflected in different target Olsen P values of 10-15 mg P/kg soil for optimum maize growth and 26-35 mg P/kg soil for optimum sweet corn growth. Three key hypotheses were developed in this study to explain why these differences may exist: i) maize and sweet corn differ in their responsiveness to P fertiliser i.e. maize is more internally P efficient and requires less P than sweet corn to grow, ii) both cultivars differ in external P efficiency i.e. their ability to take P up from soil iii) both cultivars differ in external P efficiency because they have different root system structure. Two field experiments evaluated the growth and yield responses of maize and sweet to different rates of P fertiliser application. The first experiment was conducted in Hawke's Bay (2001-02) and second in the Manawatu (2002-03) with P application rates of 0, 100 and 200 kg P/ha in the Hawke's Bay and 0, 15 and 70 kg P/ha in the Manawatu. Both experiments were conducted on soils of low available P status. The Olsen P test values of 13 mg P/kg soil in the Hawke's Bay and 11 mg P/kg soil in the Manawatu were far below the recommended values for sweet corn (25-35 mg P/kg soil). In both experiments and across all P treatments maize produced significantly higher dry matter yields than sweet corn during all sampling stages. In the Hawke's Bay experiment at 100 days after sowing (DAS), the maize (87719 plants/ha, 20.9 t/ha) produced 43% more dry matter than sweet corn (71124 plants/ha, 14.6 t/ha), whereas, in the Manawatu experiment (140 DAS), maize (71124 plants/ha, 15.2 t/ha) had a 39% higher dry matter yield than sweet corn (71124 plants/ha, 10.9 t/ha). In both the field experiments, the sweet corn fresh cob yield of 27 and 28 t/ha in the Hawke's Bay and the Manawatu regions and maize grain yields of 16 and 10 t/ha, respectively, were within the range of the reported commercial yields for each region. In both experiments, the P fertiliser application raised the soil P status (Olsen P test values) but caused no significant increases in either maize or sweet corn yields (total dry matter, sweet corn fresh cob or maize grain). Commercially viable yields of both cultivars were able to be achieved without P fertiliser application with Olsen P soil test in the range of 10-15 mg P/kg soil. Sweet corn reached harvestable maturity at 115 DAS in the Hawke's Bay and 140 DAS in the Manawatu experiments. By this time maize had produced 4-6 t/ha more total dry matter yield than sweet corn, yet maize and sweet corn had achieved similar total P uptake (32-37 kg P/ha at 100 DAS in the Hawke's Bay and 18-19 kg P/ha at 140 DAS in the Manawatu). At silking (after 75 DAS in the Hawke's Bay and approximately 110 DAS in the Manawatu), both cultivar's total leaf P concentrations (0.21-0.25%) were within the sufficiency range values for maize crops in New Zealand (0.18-0.33 %). Maize, however was more internally P efficient growing more dry matter per unit P taken up, which was more noticeable in the drier season. Fertiliser P application increased P uptake with both cultivars under moist conditions in the Hawke's Bay experiment (2001-02). However, the dry conditions in the Manawatu (2002-03) limited P uptake as well as restricted dry matter yields with both cultivars. Further, there were no significant differences between maize and sweet corn P uptake efficiency (kg P/kg root) despite significant differences in the root system structure (biomass) for both cultivars at all stages, which lead to different temporal patterns of P uptake. The lack of maize yield response to fertiliser P in both field experiments is consistent with the New Zealand recommendations for growing a maize grain crop (because soil Olsen P was in the range of 10-15 mg P/kg). However, the lack of sweet corn yield response in both field experiments does not support the New Zealand recommendations for growing sweet corn (which assume optimal Olsen P values are 26-35 mg P/kg).

Page generated in 0.0629 seconds