• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A characterization of the 2-fusion system of L_4(q)

Lynd, Justin 22 June 2012 (has links)
No description available.
2

Cohomology with twisted coefficients of the geometric realization of linking systems / Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison

Molinier, Rémi 17 July 2015 (has links)
Nous présentons une étude de la cohomologie à coefficients tordus de la réalisation géométrique des systèmes de liaison. Plus précisément, si (S, Ƒ, ℒ) est un groupe fini p-local, nous travaillons sur la cohomologie H*(\ℒ\, M) de la réalisation géométrique de ℒ, avec un Z(p)[π₁(\ℒ\)]-module M en coefficients, et ses liens avec les éléments Fᶜ-stables H* (Ƒᶜ, M) ⊆ H*(S, M) à travers l’inclusion de BS dans \ℒ\. Après avoir donné la définition des éléments Ƒᶜ-stables, nous étudions l’endomorphisme de H*(S, M) induit par un (S, S)-bi-ensemble Ƒᶜ-caractéristique et nous montrons que sous certaine hypothèse et si l’action est nilpotent, alors on a un isomorphisme naturel H*(\ℒ\, M) ≌ H* (Ƒᶜ,M). Ensuite, nous regardons les actions p-résolubles à travers la notion de sous-groupe p-local d’index premier à p ou une puissance de p. Nous montrons que si l’action de π₁(\ℒ\) sur M se factorise par un p'-groupe alors on a aussi un isomorphisme naturel. Pour une action p-résoluble plus général, nous obtenons un résultat dans le cas des systèmes réalisables. Ces résultats nous conduisent à la conjecture qu’on a un isomorphisme naturel pour tout groupe fini p-local et toute action p-résoluble. Nous donnons quelque outils pour étudier cette conjecture. Nous travaillons sur les produits de groupes finis p-locaux avec la formule de Kunneth et les systèmes de liaison que se décomposent bien vis-à-vis de la suite exacte longue de Mayer-Vietoris. Finalement, nous étudions les sous-groupes essentiels d’un produit couronné par Cp. Nous finissons par des exemples qui soulignent, qu’en général, on ne peut espérer un isomorphisme entre H*(\ℒ\, M) et H*(Ƒᶜ, M). / The aim of this work is to study the cohomology with twisted coefficients of the geometric realization of linking systems. More precisely, if (S, Ƒ, ℒ) is a p-local finite group, we work on the cohomology H*(\ℒ\, M) of the geometric realization of ℒ with coefficients in a Z(p)[π₁(\ℒ\)]-module M and its links with the Ƒᶜ-stables H*(Ƒᶜ, M) ⊆ H*(S, M) trough the inclusion of BS in \ℒ\. After we give the definition of Ƒᶜ-stable elements , we study the endomorphism of H*(S, M) induced by an Fc-characteristic (S, S)-biset and we show that, if the action is nilpotent- and we assume an hypothesis, we have a natural isomorphism H*(\ℒ\, M) ≌ H* (Fᶜ;M). Secondly, we look at p-solvable actions of π₁(\ℒ\) on M through the notion of p-local subgroups of index a power of p or prime to p. If the action factors through a p'-group, we show that there si also a natural isomorphism. We then work on extending this to any-p-solvable action and we get some positive answer then the p-local finite groupis realizable. Theses leads to the conjecture that it is true for any-p-local finite group and any-p-solvable actions. We also give some tools to study this conjecture on examples. We look at products of p-local finite groups with Kunneth Formula and linking system which can be decomposed in a way which behaves well with Mayer-Vietoris long exact sequence. Finally, we study essential subgroups of wreath productsby Cp. We finish with some examples which illustrate that, in general, we cannot hope an isomorphism between H*(\ℒ\, M) and H*(Ƒᶜ, M).

Page generated in 0.0551 seconds