• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Groupes linéaires définissables dans les corps p-adiques / Linear groups definable in p-adic fields

Druart, Benjamin 29 June 2015 (has links)
Cette thèse est consacrée à l’étude des groupes linéaires définissables dans les corpsp-adiques. Les tores anisotropes jouent un rôle central tout au long de ce travail. Nousdonnons une description modèle-théorique et algébrique des Qp-tores anisotropes dedimension 1.L’étude des sous-groupes de Cartan de SL2(Qp) (où Qp est un corps élémentairementéquivalent à Qp) nous permet de donner une description complète de tous les sous-groupes définissables de SL2(Qp).Nous nous intéressons également aux groupes linéaires définissables dans des enri-chissements p-minimaux d’un corps p-adiquement clos. Nous introduisons une notionde p-connexité pour les groupes. Et nous établissons que tout groupe linéaire com-mutatif p-connexe définissable dans une telle structure est isomorphe à un groupesemi-algébrique.Enfin des résultats sur la généricité et la générosité dans SL2(Qp) sont donnés. / This thesis is dedicated to the study of linear definable groups in p-adic fields. Ani-sotropic tori play an important role in this work. We give a model-theoretic andalgebraic description of anisotropic Qp-tori of dimension 1.The study of Cartan subgroups in SL2(Qp) (where Qp is a field elementarily equi-valent to Qp) permit us to give a complete description of all definable subgroups ofSL2(Qp).We are seeing also linear groups definable in p-minimal expansions of p-adically closedfields. We introduce a notion of p-connexity for groups. We etablish that every linearcommutative p-connected group definable in such structure is isomorphic to a semi-algebraic group.Finally some results on genericity and generosity in SL2(Qp) are given.

Page generated in 0.0548 seconds