• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the activation and regulation of the proteasome : an essential proteolytic complex

Masson, Patrick January 2004 (has links)
The proteasome is a major non-lysosomal proteolytic complex present in eukaryotic cells and has a central role in regulating many protein levels. The complex has been shown to participate in various intracellular pathways including cell cycle regulation or quality control of newly synthesized proteins and many other key pathways. This amazing range of substrates would not be possible without the help of regulators that are able to bind to the 20S proteasome and modulate its activity. Among those, the PA700 or 19S regulator and the PA28 family are the best characterized in higher eukaryotes. The 19S regulatory particle is involved in the recognition of ubiquitinated proteins, targeted for degradation by the proteasome. The PA28 (also termed 11S REG) family is composed of two members the PA28αβ and PA28γ. The function of PA28αβ is related to the adaptive immune response with a proposed contribution in MHC class I peptide presentation whereas the biological role PA28γ remains unknown. The main objectives of the laboratory, and subsequently of this thesis are to use Drosophila melanogaster model system and its advantages to better understand the precise contribution of these different activators in the regulation of the proteasome. Using genomic resources, a unique Drosophila PA28 member was identified, characterized and was shown to be a proteasome regulator with all the properties of PA28γ. Through site-directed mutagenesis we identified a functional nuclear localization signal in the homolog-specific insert region. Study of the promoter region revealed that transcription of Drosophila PA28γ (dPA28γ) gene is under control of DREF, a transcription factor involved in the regulation of genes related to DNA synthesis and cell proliferation. To confirm that dPA28γ has a role in cell cycle progression, the effect of removing dPA28γ from S2 cells was tested using RNA interference. Drosophila cells depleted of dPA28γ showed partial arrest in G1/S cell cycle transition confirming a conserved function between Drosophila and mammalian forms of PA28γ. Finally, characterization of the Dictyostelium regulator, an evolutionarily distant member of the PA28γ, was carried out using fluorogenic degradation assays. We are currently knocking-out the gene in order to determine the biological function of the activator. A second part of my work consisted in the generation of a Drosophila assay used to identify in vivo substrates of the 19S regulator, an assay system that has been originally engineered by Dantuma and coworkers in human cell lines. This was achieved by cloning of GFP behind a series of modified ubiquitins that create substrates degraded through different pathways involving the proteasome pathways. The last project of my thesis concerns the characterization of the mechanism for upregulation of proteasomal gene mRNA after MG132 (proteasome inhibitor) treatment. So far, we found that the 5´-UTR of the genes is responsible for this induction. We are now looking for the precise motif involved in this regulation.
2

Biochemical, structural and functional characterization of PIP30, a novel regulator of proteasome activator PA28gamma / Caractérisation biochimique, structurale et fonctionnelle de PIP30, un nouveau régulateur de l’activateur du protéasome PA28gamma

Jonik-Nowak, Beata 03 December 2014 (has links)
Le protéasome est responsable de la dégradation régulée d'une majeure partie des protéines intracellulaires. Cette machinerie multimoléculaire est composée d'un cœur catalytique, le protéasome 20S, qui peut être activé par plusieurs types de protéines régulatrices, en particulier la particule régulatrice 19S ou PA700, les complexes heptamériques formés par les membres de la famille 11S (ou PA28) et PA200. Au cours de ce travail, nous nous sommes focalisés sur PA28gamma, un régulateur nucléaire du protéasome, qui active la dégradation de plusieurs substrats par le protéasome 20S de façon indépendante de l'ubiquitine et de l'ATP. Malgré de multiples études montrant l'implication de PA28gamma dans de nombreux processus cellulaires essentiels tels que le cycle cellulaire, la prolifération, l'apoptose, l'architecture nucléaire, la dynamique de la chromatine, les infections virales et la réponse au stress, ses fonctions exactes ne sont pas encore comprises. De plus, les mécanismes impliqués dans la régulation de l'activité de PA28gamma et de son association avec le protéasome 20S restent mystérieux. Une analyse SILAC des partenaires d'interaction de PA28gamma endogène a révélé l'existence d'un nouveau facteur, non caractérisé, que nous avons appelé PIP30 (PA28gamma Interacting Protein 30 kDa). Le gène PIP30 contient un domaine très conservé chez les Eucaryotes. Nous avons produit et purifié la protéine PIP30 recombinante et montré qu'elle est faiblement structurée, malgré le fait qu'elle puisse se dimériser. Nous avons confirmé, aussi bien in vitro qu'in cellulo, que PIP30 interagit directement et spécifiquement avec PA28gamma. En analysant la co-immunoprécipitation de PA28gamma avec différents mutants tronqués de GFP-PIP30, nous avons pu identifier la séquence de PIP30 responsable de l'interaction avec PA28gamma dans sa partie C-terminale. Nous essayons maintenant d'identifier la séquence de PA28gamma impliquée dans la liaison de PIP30 et de cristalliser le complexe PA28gamma/PIP30. L'élaboration d'un anticorps anti-PIP30 « maison » nous a permis de montrer que PIP30 est une protéine nucléaire stable. Son niveau d'expression diminue en réponse à la déplétion de PA28gamma, ce qui suggère que PIP30 est stabilisée par son interaction avec PA28gamma in cellulo. Nous avons démontré in vitro que PIP30 inhibe partiellement l'activation médiée par PA28gamma des activités de type chymotrypsine et caspase, mais pas trypsine, du protéasome. Cependant, nous avons montré, par une approche ELISA, que PIP30 n'affecte pas la liaison de PA28gamma au protéasome 20S. Par ailleurs, nous avons testé l'effet de PIP30 sur la dégradation de p21 par le complexe PA28gamma/protéasome 20S et observé que PIP30 augmente la vitesse de dégradation de p21 dans ce test. Nos tentatives pour élucider la fonction exacte de PIP30 in cellulo n'ont jusqu'ici pas abouti à une conclusion convaincante. L'ensemble de ces résultats suggère que PIP30 pourrait être impliqué dans le recrutement sélectif des substrats de PA28gamma et/ou dans la modulation de l'activation du protéasome par PA28gamma. / The proteasome is responsible for the regulated degradation of most intracellular proteins. This multi-subunit machinery is composed of a common catalytic core, the 20S proteasome, which can be activated by various types of regulators, notably the 19S regulatory particle or PA700, the heptameric complexes formed by the members of the 11S (or PA28) family and PA200. This work has been focused on PA28gamma, a nuclear regulator of the proteasome, which has been shown to activate degradation of several proteasomal substrates in an ATP- and ubiquitin- independent manner. Despite many evidences revealing the involvement of PA28gamma in many essential cellular processes, such as cell cycle progression, proliferation, apoptosis, nuclear architecture, chromatin dynamics, viral infection and stress response, its exact function(s) remain to be understood. In addition, how PA28gamma activity and association to the 20S proteasome are regulated is completely unclear. A SILAC-based analysis of endogenous PA28gamma interaction partners revealed the existence of a novel, completely uncharacterized protein, which we called PIP30 (PA28gamma Interacting Protein 30 kDa). Evolutionary analysis indicates that PIP30 gene contains a domain highly conserved in Eukaryotes, without any alternative splicing or gene duplication evidences. We produced and purified the recombinant PIP30 protein and showed that it is poorly structured, although it is able to make dimers. We confirmed both in vitro and in cellulo that PIP30 directly and specifically interacts with PA28gamma. By analyzing the co-immunoprecipitation of PA28gamma with various GFP-PIP30 truncation mutants, we identified the sequence of PIP30 responsible for PA28gamma binding in its C-terminal part. Ongoing analyses now focus on the identification of PIP30 binding motif on PA28gamma sequence and the crystallization of the PA28gamma-PIP30 complex. Using homemade anti-PIP30 antibodies, we showed that PIP30 is a stable nuclear protein. Its expression level is decreased in response to PA28gamma depletion, suggesting that it is stabilized by its interaction with PA28gamma in cellulo. We demonstrated in vitro that PIP30 partially inhibits PA28gamma-mediated activation of the chymotrypsin- and caspase-, but not the trypsin-like, activities of the proteasome. However, we showed by an ELISA-based approach that PIP30 does not affect PA28gamma binding to 20S. Considering the limitations of probing proteasome activity with small fluorogenic substrates, we tested the effect of PIP30 on the PA28gamma-dependent proteasomal degradation of in vitro translated p21, a known protein substrate of PA28gamma. We unexpectedly found that PIP30 enhanced the rate of p21 degradation. Our attempts to elucidate the exact functions of PIP30 in cellulo were unsuccessful so far. Altogether, our results suggest that PIP30 could be involved in the selective recruitment of PA28gamma protein substrates and/or modulate PA28gamma-mediated proteasome activation.

Page generated in 0.0378 seconds