1 |
A Dynamic Queue Adjustment Based on Packet Loss Ratio in Wireless NetworksChu, Tsuh-Feng 13 August 2003 (has links)
Traditional TCP when applied in wireless networks may encounter two limitations. The first limitation is the higher bit error rate (BER) due to noise, fading, and multipath interference. Because traditional TCP is designed for wired and reliable networks, packet loss is mainly caused by network congestions. As a result, TCP may decrease congestion window inappropriately upon detecting a packet loss. The second limitation is about the packet scheduling, which mostly does not consider wireless characteristics.
In this Thesis, we propose a local retransmission mechanism to improve TCP throughput for wireless networks with higher BER. In addition, we measure the packet loss ratio (PLR) to adjust the queue weight such that the available bandwidth for each queue can be changed accordingly. In our mechanism, the queue length is used to determine whether there is a congestion in wireless networks. When the queue length exceeds a threshold, it indicates that the wireless networks may have congestion very likely. We not only propose the dynamic weight-adjustment mechanism, but also solve the packet out-of-sequence problem, which results form when a TCP flow changes to a new queue.
For the purpose of demonstration, we implement the proposed weight-adjustment mechanisms on the Linux platform. Through the measurements and discussions, we have shown that the proposed mechanisms can effectively improve the TCP throughput in wireless networks.
|
2 |
An Enhanced Dynamic Algorithm For Packet BufferRajan, Vinod 11 December 2004 (has links)
A packet buffer for the protocol processor is a large memory space that holds incoming data packets for an application. Data packets for each application are stored in the form of FIFO queues in the packet buffer. Packets are dropped when the buffer is full. An efficient buffer management algorithm is required to manage the buffer space among the different FIFO queues and to avoid heavy packet loss. This thesis develops a simulation model for the packet buffer and studies the performance of conventional buffer management algorithms when applied to packet buffer. This thesis proposes a new buffer management algorithm, Dynamic Algorithm with Different Thresholds (DADT) to improve the packet loss ratio. This algorithm takes advantage of the different packet sizes for each application and proportionally allocates buffer space for each queue. The performance of the DADT algorithm is dependent upon the packet size distribution in a network traffic load. Three different network traffic loads are considered for our simulations. For the average network traffic load, the DADT algorithm shows an improvement of 6.7 % in packet loss ratio over the conventional dynamic buffer management algorithm. For the high and actual network traffic loads, the DADT algorithm shows an improvement of 5.45 % and 3.6 % in packet loss ratio respectively. Based on the simulation results, the DADT algorithm outperforms the conventional buffer management algorithms for various network traffic loads.
|
3 |
Comparative Analysis of VANET and Vehicular Cloud Models with Advanced Communications ProtocolsSukhu, Jonathan Brandon January 2024 (has links)
Vehicular communication systems are integral for efficient highway operational management and for mitigating severe traffic congestion. While vehicular ad hoc networks (VANET) are reliable and provide avenues to minimal reliance on existing infrastructure, they can experience high communication overhead and network disruptions. Vehicular micro clouds (VMCs) provide a promising solution to overcome the challenges of VANET by reducing communication latency through cooperative and collaborative resource allocation and data offloading. This thesis offers a comparative performance analysis of freeway incident management and vehicle platooning, comparing VANET communications versus stationary and platoon-based dynamic VMCs. Specifically, it studies speed and lane-changing advisories in addition to freeway platooning. To further enhance the analysis, the performance of both communication architectures is evaluated using communication protocols of DSRC versus cellular technologies of C-V2X, 4G LTE, and 5G NR for latency, bandwidth, range, and deployment considerations. The system-level features, such as driving safety and vehicular mobility are measured to evaluate the efficacy of the communication systems under incident-induced traffic conditions. The study uses the AIMSUN microscopic traffic simulator to model and analyze the performance of the proposed systems. Key performance indicators include communication latency and packet loss ratio. In addition, the stationary and dynamic cloud systems show advantages in reducing travel time delay, even at high penetration rates of the connected vehicles, whilst reducing collision risks. On average, we observe improvements in travel time by 10% by implementing vehicular clouds over traditional ad-hoc networks. From a communications standpoint, the overall latency delay and packet loss are reduced by 7% and 11%, respectively, with the implementation of cloud models. The findings also delineate the benefits of dynamic cloud models, given their improved manoeuvrability, can maximize the computational capabilities of CVs, even at high market penetrations in large-scale freeway demands. The results suggest a shift towards more reliance on connected vehicular clouds to minimize the risks associated with message interference and system overload, whilst fostering advancements in intelligent freeway traffic management systems. / Thesis / Master of Applied Science (MASc)
|
Page generated in 0.031 seconds