• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rapid Prediction of Low-Boom and Aerodynamic Performance of Supersonic Transport Aircraft Using Panel Methods

Giblette, Ted N. 01 December 2019 (has links)
The Utah State University Aerolab developed and tested a set of tools for rapid prediction of the loudness of a sonic boom generated by supersonic transport aircraft. This work supported a larger effort led by Texas A&M to investigate the use of adaptive aerostructures in lowering sonic boom loudness at off design conditions. Successful completion of this effort will improve the feasibility of supersonic commercial transport over land. Funding was provided by a NASA University Leadership Initiative grant to several universities, including Utah State University, as well as industry partners to complete this work over a five year period. The work presented in this thesis was done over the first year of the grant. The Aerolab team was specifically tasked with developing a set of tools for rapidly predicting the sonic boom loudness of supersonic aircraft. Specifically, this work included an assessment of the existing analysis tools available followed by the planning, development, and testing of a framework of tools for performing the needed calculations. Results of the framework were compared against high fidelity solutions available from the 2017 AIAA Sonic Boom Prediction Workshop. These comparisons revealed that panel methods perform well for simple geometries. However, localized errors appear when modeling more complex geometries that reduce the accuracy of the predicted sonic boom loudness. It was found that these localized errors were a consequence of the inherent assumptions built into panel methods. Consequently, in future work, it may be necessary to develop techniques for combining the results of panel methods with higher fidelity methods or to revisit the panel method formulation.
2

Aircraft Parametric 3D Modelling and Panel Code of Analysis for Conceptual Design

Tarkian, Mehdi, Javier Zaldivar Tessier, Francisco January 2007 (has links)
<p>Throughout the development of this report there will be a brief explanation of what the actual Aircraft Design Process is and in which stages the methodology that the authors are proposing will be implemented as well as the tools that will interact to produce this methodology.</p><p>The proposed tool will be the first part of a methodology that, according to the authors, by integrating separate tools that are currently used in different stages of the aeronautical design, will promote a decrease in the time frame for the initial stages of the design process.</p><p>The first part of the methodology above, that is proposed in this project, starts by creating a computer generated aircraft model and analyzing its basic aerodynamic characteristics “Lift Coefficient” and “Induced Drag Coefficient”, this step will be an alternative to statistical and empirical methods used in the industry, which require vast amount of data.</p><p>This task will be done in several steps, which will transfer the parametric aircraft model to an input file for the aerodynamic analysis program. To transfer the data a “translation” program has been developed that arranges the geometry and prepares the input file for analysis.</p><p>During the course of this report the reader will find references to existing aircrafts, such as the MD-11 or Airbus 310. However, these references are not intended to be an exact computer model of the mentioned airplanes. The authors are using this as reference so the reader can relate what he/she is seeing in this paper to existing aircrafts. By doing such comparison, the author intends to demonstrate that the Parametric Model that has been created possesses the capability to simulate to some extend the shape of existing aircrafts.</p><p>Finally from the results of this project it is concluded that the methodology in question is promising. Linking the two programs is possible and the aerodynamic characteristics of the models tested fall in the appropriate range. None the less the research must continue following the line that has been discussed in this report.</p>
3

Aircraft Parametric 3D Modelling and Panel Code of Analysis for Conceptual Design

Tarkian, Mehdi, Javier Zaldivar Tessier, Francisco January 2007 (has links)
Throughout the development of this report there will be a brief explanation of what the actual Aircraft Design Process is and in which stages the methodology that the authors are proposing will be implemented as well as the tools that will interact to produce this methodology. The proposed tool will be the first part of a methodology that, according to the authors, by integrating separate tools that are currently used in different stages of the aeronautical design, will promote a decrease in the time frame for the initial stages of the design process. The first part of the methodology above, that is proposed in this project, starts by creating a computer generated aircraft model and analyzing its basic aerodynamic characteristics “Lift Coefficient” and “Induced Drag Coefficient”, this step will be an alternative to statistical and empirical methods used in the industry, which require vast amount of data. This task will be done in several steps, which will transfer the parametric aircraft model to an input file for the aerodynamic analysis program. To transfer the data a “translation” program has been developed that arranges the geometry and prepares the input file for analysis. During the course of this report the reader will find references to existing aircrafts, such as the MD-11 or Airbus 310. However, these references are not intended to be an exact computer model of the mentioned airplanes. The authors are using this as reference so the reader can relate what he/she is seeing in this paper to existing aircrafts. By doing such comparison, the author intends to demonstrate that the Parametric Model that has been created possesses the capability to simulate to some extend the shape of existing aircrafts. Finally from the results of this project it is concluded that the methodology in question is promising. Linking the two programs is possible and the aerodynamic characteristics of the models tested fall in the appropriate range. None the less the research must continue following the line that has been discussed in this report.

Page generated in 0.0232 seconds