1 |
Dating Divergence Times in PhylogeniesAnderson, Cajsa Lisa January 2007 (has links)
<p>This thesis concerns different aspects of dating divergence times in phylogenetic trees, using molecular data and multiple fossil age constraints.</p><p>Datings of phylogenetically basal eudicots, monocots and modern birds (Neoaves) are presented. Large phylograms and multiple fossil constraints were used in all these studies. Eudicots and monocots are suggested to be part of a rapid divergence of angiosperms in the Early Cretaceous, with most families present at the Cretaceous/Tertiary boundary. Stem lineages of Neoaves were present in the Late Cretaceous, but the main divergence of extant families took place around the Cre-taceous/Tertiary boundary.</p><p>A novel method and computer software for dating large phylogenetic trees, PATHd8, is presented. PATHd8 is a nonparametric smoothing method that smoothes one pair of sister groups at a time, by taking the mean of the added branch lengths from a terminal taxon to a node. Because of the local smoothing, the algorithm is simple, hence providing stable and very fast analyses, allowing for thousands of taxa and an arbitrary number of age constraints.</p><p>The importance of fossil constraints and their placement are discussed, and concluded to be the most important factor for obtaining reasonable age estimates.</p><p>Different dating methods are compared, and it is concluded that differences in age estimates are obtained from penalized likelihood, PATHd8, and the Bayesian autocorrelation method implemented in the multidivtime program. In the Bayesian method, prior assumptions about evolutionary rate at the root, rate variance and the level of rate smoothing between internal edges, are suggested to influence the results.</p>
|
2 |
Dating Divergence Times in PhylogeniesAnderson, Cajsa Lisa January 2007 (has links)
This thesis concerns different aspects of dating divergence times in phylogenetic trees, using molecular data and multiple fossil age constraints. Datings of phylogenetically basal eudicots, monocots and modern birds (Neoaves) are presented. Large phylograms and multiple fossil constraints were used in all these studies. Eudicots and monocots are suggested to be part of a rapid divergence of angiosperms in the Early Cretaceous, with most families present at the Cretaceous/Tertiary boundary. Stem lineages of Neoaves were present in the Late Cretaceous, but the main divergence of extant families took place around the Cre-taceous/Tertiary boundary. A novel method and computer software for dating large phylogenetic trees, PATHd8, is presented. PATHd8 is a nonparametric smoothing method that smoothes one pair of sister groups at a time, by taking the mean of the added branch lengths from a terminal taxon to a node. Because of the local smoothing, the algorithm is simple, hence providing stable and very fast analyses, allowing for thousands of taxa and an arbitrary number of age constraints. The importance of fossil constraints and their placement are discussed, and concluded to be the most important factor for obtaining reasonable age estimates. Different dating methods are compared, and it is concluded that differences in age estimates are obtained from penalized likelihood, PATHd8, and the Bayesian autocorrelation method implemented in the multidivtime program. In the Bayesian method, prior assumptions about evolutionary rate at the root, rate variance and the level of rate smoothing between internal edges, are suggested to influence the results.
|
3 |
Taxonomy and Reticulate Phylogeny of Heliosperma and Related Genera (Sileneae, Caryophyllaceae)Frajman, Božo January 2007 (has links)
Heliosperma (nom. cons prop.) comprises 15—20 taxa, most of them endemic to the Balkan Peninsula. DNA sequences from the chloroplast (rps16 intron, psbE-petG spacer) and the nuclear genome (ITS and four putatively unlinked RNA polymerase genes) are used to elucidate phylogenetic relationships within Heliosperma, and its position within Sileneae. Three main lineages are found within Heliosperma: Heliosperma alpestre, H. macranthum and the H. pusillum-clade. The relationships among the lineages differ between the plastid and the nuclear trees. Relative dates are used to discriminate among inter- and intralineage processes causing such incongruences, and ancient homoploid hybridisation is the most likely explanation. The chloroplast data strongly support two, geographically correlated clades in the H. pusillum-group, whereas the relationships appear poorly resolved by the ITS data, when analysed under a phylogenetic tree model. However, a network analysis finds a geographic structuring similar to that in the chloroplast data. Ancient vicariant divergence followed by hybridisation events best explains the observed pattern. The morphological and taxonomical diversity in the H. pusillum-group is possibly ecology-induced, and is not correlated with the molecular data. Phylogenetic patterns regarding the origin of Heliosperma are complicated, probably influenced by reticulate and sorting events. At least two ancient lineages have been involved in its evolution, one most closely related to Viscaria/Atocion and the other to Eudianthe/Petrocoptis. Atocion and Viscaria are sister genera, most species-rich on the Balkans, and including six/three species. Phylogenies do not support their traditional classification, and provide a framework for a taxonomic revision. Atocion compactum is found in three different positions in the chloroplast tree, and in a single clade in the nuclear gene trees. Using relative dates we demonstrate that hybridisation with subsequent chloroplast capture is a feasible explanation for the pattern observed. This, and other observed reticulate patterns, highlights the importance of hybridisation in plant evolution.
|
Page generated in 0.024 seconds