1 |
The effects of the adipocyte-secreted proteins resistin and visfatin on the pancreatic beta-cellOnyango, David J. January 2009 (has links)
Adipose tissue secreted proteins (adipokines) have been proposed to form a link between obesity and type 2 diabetes (T2D). Resistin and visfatin are two adipokines which have been previously suggested as having roles in the pancreatic islet. The aim of this study was therefore to investigate the regulatory role of the adipokines resistin and visfatin in the pancreatic beta-cell. In order to do this, pancreatic β-cell lines from rat (BRIN-BD11) and mouse (βTC-6) were used to study the effect of exogenous incubation with physiological and pathological concentrations of resistin and visfatin on diverse elements of beta-cell biology including cell viability, gene expression and insulin secretion. In addition to this the expression levels of these two adipokines was also measured in the beta-cell. PCR array analysis showed that resistin and visfatin treatment resulted in significant changes in the expression of key beta-cell specific genes. Interestingly, both resistin and visfatin are highly expressed in the beta-cells. This suggests that the roles of these adipokines are not confined to adipose tissue but also in other endocrine organs. Resistin treatment significantly increased viability of the beta-cells at physiological concentrations however there was no increase with the elevated pathological concentrations. Resistin at elevated concentrations decreased insulin receptor expression in the beta-cells however there was no significant effect at lower concentrations. Both physiological and elevated resistin concentrations did not have any effect on glucose stimulated insulin secretion. Incubation of visfatin induced phosphorylation of insulin receptor and the intracellular signalling MAPK, ERK1/2. Visfatin treatment at 200ng/ml also significantly increased insulin secretion. These effects were replicated by incubation of beta-cells with the product of visfatin’s enzymatic action, nicotinamide mononucleotide and were reversed by visfatin inhibitor FK866. Visfatin treatment at low concentrations did not have any effect on cell viability however the elevated concentrations resulted in a decline. These data indicate that both resistin and visfatin potentially play important roles in beta-cell function and viability and that they form a significant link between adipose tissue and the pancreatic islet in type 2 diabetes.
|
2 |
Pre-B Cell Colony-enhancing Factor (PBEF) Promotes Neutrophil Inflammatory Function through Enzymatic and Non-enzymatic MechanismsMalam, Zeenatsultana 19 January 2012 (has links)
Pre-B Cell Colony-Enhancing Factor (PBEF) is a cytokine-like molecule that functions as a nicotinamide phosphoribosyl transferase (Nampt) in a salvage pathway of NAD biosynthesis. PBEF has well-characterized activity as an extracellular inflammatory mediator and has been proposed to signal through the insulin receptor (IR). As neutrophils are key effectors of the innate immune response to infection and injury, we hypothesized that PBEF promotes pro-inflammatory function in neutrophils and that these pro-inflammatory effects may occur through interactions with the neutrophil IR or through PBEF���s enzymatic Nampt activity. Our studies focused on two important facets of neutrophil inflammatory function: their ability to generate reactive oxygen species (ROS) and undergo constitutive apoptosis. We found that, although PBEF does not activate oxidative burst on its own, it primes for ROS generation through the NADPH oxidase. PBEF promotes membrane translocation of cytosolic NADPH oxidase subunits p40phox and p47phox, but not p67phox, induces p40phox phosphorylation and activates Rac. Priming, translocation and phosphorylation are dependent on activation of p38 and ERK mitogen activated protein kinases. PBEF priming of neutrophils occurs independent of its Nampt capacity or of interactions with IR. We next investigated the effects of PBEF on neutrophil constitutive apoptosis. Our lab previously established that extracellular PBEF delays neutrophil apoptosis. Accordingly, we next investigated the mechanism through which this delay was occurring. PBEF-induced delayed apoptosis was enhanced in the presence of Nampt substrates, and NAD alone could delay apoptosis to an extent comparable to PBEF. Delayed apoptosis was blocked by a Nampt inhibitor and was lacking when a mutated PBEF deficient in Nampt activity was utilized. The cell-surface NAD glycohydrolase, CD38, can convert NAD to cyclic ADP-ribose (cADPR). Blocking CD38 activity with a blocking antibody partially reversed the delay of apoptosis induced by PBEF in conjunction with its substrates, and delayed apoptosis could be achieved by addition of the CD38 product cADPR. Finally, we found that delayed apoptosis induced by PBEF did not involve IR. These results indicate that PBEF can prime for enhanced oxidative burst and delay apoptosis in neutrophils, and that these phenomena occur through distinct mechanisms.
|
3 |
Pre-B Cell Colony-enhancing Factor (PBEF) Promotes Neutrophil Inflammatory Function through Enzymatic and Non-enzymatic MechanismsMalam, Zeenatsultana 19 January 2012 (has links)
Pre-B Cell Colony-Enhancing Factor (PBEF) is a cytokine-like molecule that functions as a nicotinamide phosphoribosyl transferase (Nampt) in a salvage pathway of NAD biosynthesis. PBEF has well-characterized activity as an extracellular inflammatory mediator and has been proposed to signal through the insulin receptor (IR). As neutrophils are key effectors of the innate immune response to infection and injury, we hypothesized that PBEF promotes pro-inflammatory function in neutrophils and that these pro-inflammatory effects may occur through interactions with the neutrophil IR or through PBEF’s enzymatic Nampt activity. Our studies focused on two important facets of neutrophil inflammatory function: their ability to generate reactive oxygen species (ROS) and undergo constitutive apoptosis. We found that, although PBEF does not activate oxidative burst on its own, it primes for ROS generation through the NADPH oxidase. PBEF promotes membrane translocation of cytosolic NADPH oxidase subunits p40phox and p47phox, but not p67phox, induces p40phox phosphorylation and activates Rac. Priming, translocation and phosphorylation are dependent on activation of p38 and ERK mitogen activated protein kinases. PBEF priming of neutrophils occurs independent of its Nampt capacity or of interactions with IR. We next investigated the effects of PBEF on neutrophil constitutive apoptosis. Our lab previously established that extracellular PBEF delays neutrophil apoptosis. Accordingly, we next investigated the mechanism through which this delay was occurring. PBEF-induced delayed apoptosis was enhanced in the presence of Nampt substrates, and NAD alone could delay apoptosis to an extent comparable to PBEF. Delayed apoptosis was blocked by a Nampt inhibitor and was lacking when a mutated PBEF deficient in Nampt activity was utilized. The cell-surface NAD glycohydrolase, CD38, can convert NAD to cyclic ADP-ribose (cADPR). Blocking CD38 activity with a blocking antibody partially reversed the delay of apoptosis induced by PBEF in conjunction with its substrates, and delayed apoptosis could be achieved by addition of the CD38 product cADPR. Finally, we found that delayed apoptosis induced by PBEF did not involve IR. These results indicate that PBEF can prime for enhanced oxidative burst and delay apoptosis in neutrophils, and that these phenomena occur through distinct mechanisms.
|
Page generated in 0.0226 seconds