• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LASER TRANSMISSION WELDING OF POLYBUTYLENE TEREPHTHALATE AND POLYETHYLENE TEREPHTHALATE BLENDS

KHOSRAVI, SINA 31 August 2010 (has links)
Laser Transmission Welding (LTW) involves localized heating at the interface of two pieces of plastic (a laser transparent plastic and laser absorbing plastic) to be joined. It produces strong, hermetically sealed welds with minimal thermal and mechanical stress, no particulates and very little flash. An ideal transparent polymer for LTW must have: a low laser absorbance to avoid energy loss, a low level of laser scattering so it can provide a maximum energy flux at the weld interface and also have a high resistance to thermal degradation. The objective of the project was to analyze the effect of blend ratios of polybutylene terephthalate and polyethylene terephthalate (PBT/PET) on these laser welding characteristics. The blends were manufactured by DSM (Netherlands). They were characterized using Differential Scanning Calorimetry (DSC) and Thermal Gravimetry Analysis (TGA). The latter technique was used to estimate the order (n), activation energy (ΔH) and frequency factor (A’) of the degradation reaction of the polymer blends. The normalized power profile of the laser after passing through the transparent polymer was measured using a novel non-contact technique and modeled using a semi-empirical model developed by Dr.Chen. Adding more PET ratio to the blend, did not change beam profile of the transmitted beam significantly. Laser welding experiments were conducted in which joints were made while varying laser power and scanning speed. Measuring the weld strength and width showed that the blends containing PET have higher strength in comparison to pure PBT. The temperature-time profile at the interface during welding was predicted using a commercial FEM code. This information was combined with the degradation rate data to estimate the relative amount of degraded material at the weld interface. It showed that increasing the ratio of PET in the blend makes it more resistant against thermal degradation which can be one of the reasons the PET containing blends reach higher weld strengths when compared to pure PBT. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-31 10:03:42.167

Page generated in 0.0169 seconds