1 |
CONTROLLING AND CHARACTERIZING MOLECULAR ORDERING OF NONCOVALENTLY FUNCTIONALIZED GRAPHENE VIA PM-IRRAS: TOWARD TEMPLATED CRYSTALLIZATION OF COMPLEX ORGANIC MOLECULESShane R. Russell (5930207) 17 January 2019 (has links)
<p>Recent
trends in materials science have exploited noncovalent monolayer chemistries to
modulate the physical properties of 2D materials, while minimally disrupting
their intrinsic properties (such as conductivity and tensile strength). Highly ordered monolayers with pattern
resolutions <10 nm over large scales are frequently necessary for device
applications such as energy conversion or nanoscale electronics. Scanning probe microscopy is commonly
employed to assess molecular ordering and orientation over nanoscopic areas of
flat substrates such as highly oriented pyrolytic graphite, but routine
preparation of high-quality substrates for device and other applications would
require analyzing much larger areas of topographically rougher substrates such
as graphene. In this work, we combine
scanning electron microscopy with polarization modulated IR reflection
adsorption spectroscopy to quantify the order of lying down monolayers of
diynoic acids on few layer graphene and graphite substrates across areas of ~1
cm<sup>2</sup>. We then utilize these highly ordered molecular films for
templating assembly of di-peptide semiconductor precursors at the nanoscale,
for applications in organic optoelectronic device fabrication.<br></p><p></p>
|
2 |
MODELING AND DEVELOPMENT OF THREE-DIMENSIONAL GEL DOSIMETERSNASR, ABDULLAH 27 March 2014 (has links)
A dynamic mathematical model was developed to simulate the response of polyacrylamide gel (PAG) dosimeters to a single spherical radioactive brachytherapy seed. Simulations were conducted for a high dose-rate (HDR) seed using 192Ir and a low dose-rate (LDR) seed using 125I. The model is able to predict the amount of polymer formed, the crosslink density, and the volume fraction of aqueous phase as a function of radial distance and time. Results show that PAG dosimeters can provide accurate HDR brachytherapy dosimetry at distances larger than 4 mm from the centre of the seed but will give poor results for LDR due to monomer diffusion.
Experiments were conducted to evaluate the potential for using pentacosa-10,12-diynoic acid (PCDA) as the reporter molecule in micelle gel dosimeters for optical computed tomography (CT) readout. Several gels containing PCDA that was solubilized using sodium dodecyl sulfate (SDS) responded to radiation by changing from colourless to blue. Unfortunately, all phantoms that showed colour changes were turbid, making them unsuitable for optical CT scanning. Several techniques were used to produce transparent gels containing PCDA but none of these gels responded noticeably to radiation. Only turbid gels with precipitated PCDA responded, indicating that the colour change was due to oligomerization within PCDA crystals and that PCDA molecules solubilized in micelles did not undergo oligomerization. As a result, PCDA is not suitable for use in radiochromic micelle gel dosimeters.
A new recipe for a radiochromic leuco crystal violet (LCV) micelle gel dosimeters with enhanced dose sensitivity was developed for optical CT readout. The recipe contains LCV, trichloro acetic acid (TCAA), Cetyl Trimethyl Ammonium Bromide (CTAB), 2,2,2-Trichloroethanol (TCE), and gelatin. Experiments were conducted to improve understanding about interactions between the different components of LCV micelle gel, highlighting the importance of pH on dose sensitivity and transparency. Results also showed the effectiveness of chlorinated compounds in improving dose sensitivity. Statistical techniques were used to build empirical models that were used to optimize the gel recipe. Additional testing in larger phantoms will be required to assess the effectiveness of the proposed gel for clinical dosimetry. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2014-03-27 11:11:47.655
|
Page generated in 0.0132 seconds