• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PCRLB-Based Radar Resource Management for Multiple Target Tracking

Deng, Anbang January 2023 (has links)
This thesis gives a unified framework to formulate and solve resource management problems in radar systems. / As a crucial factor in improving radar performance for multiple target tracking (MTT), resource management problems are analyzed in this thesis with regard to sensor platform path planning, beam scheduling, and burst parameter design. This thesis addresses problems to deploy or adapt radar configurations for multisensor-multitarget tracking, including 1) the path planning of movable receivers and power allocation of transmitted signals, 2) the optimal beam steering of high-precision pencil beams, and 3) the pulsed repetition frequency (PRF) set selection and waveform design. Firstly, the coordinated sensor management on the ends of both receivers and transmitters for a multistatic radar is studied. A multistatic radar system consists of fixed transmitters and movable receivers. To form better transmitter-target-receiver geometry and to establish an effective power allocation scheme to illuminate targets with different priorities, a joint path planning and power allocation problems, which determines the moving trajectories of receivers mounted on unmanned airborne vehicles (UAVs) and the power allocation scheme of transmitted signals over a limited time horizon, is formulated as a weighted-sum optimization. The problem is solved with a genetic algorithm (GA) with a novel pre-selection operator. The pre-selection operator, which takes advantage of the receding horizon control (RHC) framework to improve population structures prior to the next generation, can accelerate the convergence of GA. Secondly, the beam steering strategies for a cooperative phased array radar system with high-precision beams are developed. Pencil beams with narrow beamwidth, which are designated to track targets for a phased array radar, offer efficient performance in an energy-saving design, but can cause partial observations. The novel concept of expected Cramér-Rao lower bound (EPCRLB) is proposed to model partial observations. A formulation based on PCRLB is given and solved with a hierarchical genetic algorithm (HGA). An optimal strategy based on EPCRLB, which is effective in performance and efficient in time, is proposed. Finally, a joint pulsed repetition frequency (PRF) set selection and waveform design is studied. The problem tries to improve blind zone maps while preventing targets from falling into blind zones. Waveform parameters are then optimized for the system to provide better tracking accuracy. The problem is first formulated as a bi-objective optimization problem and solved with a multiple-objective genetic algorithm. Then, a two-step strategy that prioritizes the visibility of targets is developed. Numerical results demonstrate the effectiveness of proposed strategies over simple approaches. / Thesis / Doctor of Philosophy (PhD) / This thesis formulates resource management problems in various radar systems. The problems use PCRLB, a theoretically achievable lower bound for estimators, as a metric to optimize, and help the configuration of radar resources in an efficient manner. Effective strategies and improved algorithms are proposed to solve the problems.
2

Multitarget Tracking Using Multistatic Sensors

SUBRAMANIAM, MAHESWARAN 10 1900 (has links)
<p>In this thesis the problem of multitarget tracking in multistatic sensor networks is studied. This thesis focuses on tracking airborne targets by utilizing transmitters of opportunity in the surveillance region. Passive Coherent Location (PCL) system, which uses existing commercial signals (e.g., FM broadcast, digital TV) as the illuminators of opportunity for target tracking, is an emerging technology in air defence systems. PCL systems have many advantages over conventional radar systems such as low cost, covert operation and low vulnerability to electronic counter measures.</p> <p>One of another opportunistic signals available in the surveillance region is multipath signal. In this thesis, the multipath target return signals from distinct propagation modes that are resolvable by the receiver are exploited. When resolved multipath returns are not utilized within the tracker, i.e., discarded as clutter, potential information conveyed by the multipath detections of the same target is wasted. In this case, spurious tracks are formed using target-originated multipath measurements, but with an incorrect propagation mode assumption. Integrating multipath information into the tracker (and not discarding it) can help improve the accuracy of tracking and reduce the number of false tracks.</p> <p>In this thesis, these opportunistic measurements, i.e., commercial broadcast signals measurements in PCL tracking and resolvable multipath target return measurements in multipath assisted tracking are exploited. We give the optimal formulations for all of the above problems as well as the performance evaluations using PCRLB. Simulation results illustrate the performance of the algorithms.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0184 seconds