• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Projeto de um controlador PD adaptativo via alocação de polos aplicado em um robô manipulador de dois graus de liberdade planar / design of an adaptive controller pd by pole placement applied to a two-degree-of-freedom planar manipulator robot

Pereira, Laís Guedes 13 December 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:56Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2940644 bytes, checksum: 1b1c6c2e9969d935855932e2f2a1e436 (MD5) Previous issue date: 2013-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents a development and implementation of control adaptive techniques for a planar manipulator robot with two degrees of freedom, formed a rotational and a prismatic link. The rotational link is made up of a branch long U-shaped aluminum activated by a motor-reducer DC, its angular position is sensed by a ten turn potentiometer. The prismatic link is a double-acting pneumatic cylinder with a single rod fixed inside the branch U-shaped being triggered by an electropneumatic proportional valve, where linear position is given by a potentiometric ruler. Using the recursive least squares (RLS) estimator is obtained the mathematic model that represents each robot link so as uncoupled, then is designed and implemented an adaptive controller Proportional Derivative (PD-control) by pole placement to obtain the positions of the robot manipulator links. The experimental results are presented, as well as evaluation of the system response under the action of controllers implemented / Este trabalho apresenta o desenvolvimento e implementação de técnicas de controle adaptativo para um robô manipulador de dois graus de liberdade planar formado por um elo rotacional e outro prismático. O elo rotacional é composto por um ramo extenso em formato de U em alumínio acionado por um moto-redutor de corrente contínua, cujo sensoriamento da sua posição angular é realizado por um potenciômetro de dez voltas. O elo prismático é um cilindro pneumático de dupla ação com haste simples fixada na parte interna do ramo em U sendo acionado por uma válvula eletropneumática proporcional, onde sua posição linear é dada através de uma régua potenciométrica. Através do estimador dos mínimos quadrados recursivos (MQR) é obtido o modelo matemático representativo para cada elo do robô de forma desacoplada e em seguida é projetado e implementado um controlador adaptativo proporcional derivativo (PD) via alocação de polos para obter o controle de posição dos elos do robô manipulador. Os resultados experimentais são apresentados, assim como a avaliação da resposta do sistema sob a ação dos controladores implementados
2

Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter

Kumar, Rumit 16 June 2017 (has links)
No description available.
3

Model predictive control of a magnetically suspended flywheel energy storage system / Christiaan Daniël Aucamp

Aucamp, Christiaan Daniël January 2012 (has links)
The goal of this dissertation is to evaluate the effectiveness of model predictive control (MPC) for a magnetically suspended flywheel energy storage uninterruptible power supply (FlyUPS). The reason this research topic was selected was to determine if an advanced control technique such as MPC could perform better than a classical control approach such as decentralised Proportional-plus-Differential (PD) control. Based on a literature study of the FlyUPS system and the MPC strategies available, two MPC strategies were used to design two possible MPC controllers were designed for the FlyUPS, namely a classical MPC algorithm that incorporates optimisation techniques and the MPC algorithm used in the MATLAB® MPC toolbox™. In order to take the restrictions of the system into consideration, the model used to derive the controllers was reduced to an order of ten according to the Hankel singular value decomposition of the model. Simulation results indicated that the first controller based on a classical MPC algorithm and optimisation techniques was not verified as a viable control strategy to be implemented on the physical FlyUPS system due to difficulties obtaining the desired response. The second controller derived using the MATLAB® MPC toolbox™ was verified to be a viable control strategy for the FlyUPS by delivering good performance in simulation. The verified MPC controller was then implemented on the FlyUPS. This implementation was then analysed in order to validate that the controller operates as expected through a comparison of the simulation and implementation results. Further analysis was then done by comparing the performance of MPC with decentralised PD control in order to determine the advantages and limitations of using MPC on the FlyUPS. The advantages indicated by the evaluation include the simplicity of the design of the controller that follows directly from the specifications of the system and the dynamics of the system, and the good performance of the controller within the parameters of the controller design. The limitations identified during this evaluation include the high computational load that requires a relatively long execution time, and the inability of the MPC controller to adapt to unmodelled system dynamics. Based on this evaluation MPC can be seen as a viable control strategy for the FlyUPS, however more research is needed to optimise the MPC approach to yield significant advantages over other control techniques such as decentralised PD control. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
4

Model predictive control of a magnetically suspended flywheel energy storage system / Christiaan Daniël Aucamp

Aucamp, Christiaan Daniël January 2012 (has links)
The goal of this dissertation is to evaluate the effectiveness of model predictive control (MPC) for a magnetically suspended flywheel energy storage uninterruptible power supply (FlyUPS). The reason this research topic was selected was to determine if an advanced control technique such as MPC could perform better than a classical control approach such as decentralised Proportional-plus-Differential (PD) control. Based on a literature study of the FlyUPS system and the MPC strategies available, two MPC strategies were used to design two possible MPC controllers were designed for the FlyUPS, namely a classical MPC algorithm that incorporates optimisation techniques and the MPC algorithm used in the MATLAB® MPC toolbox™. In order to take the restrictions of the system into consideration, the model used to derive the controllers was reduced to an order of ten according to the Hankel singular value decomposition of the model. Simulation results indicated that the first controller based on a classical MPC algorithm and optimisation techniques was not verified as a viable control strategy to be implemented on the physical FlyUPS system due to difficulties obtaining the desired response. The second controller derived using the MATLAB® MPC toolbox™ was verified to be a viable control strategy for the FlyUPS by delivering good performance in simulation. The verified MPC controller was then implemented on the FlyUPS. This implementation was then analysed in order to validate that the controller operates as expected through a comparison of the simulation and implementation results. Further analysis was then done by comparing the performance of MPC with decentralised PD control in order to determine the advantages and limitations of using MPC on the FlyUPS. The advantages indicated by the evaluation include the simplicity of the design of the controller that follows directly from the specifications of the system and the dynamics of the system, and the good performance of the controller within the parameters of the controller design. The limitations identified during this evaluation include the high computational load that requires a relatively long execution time, and the inability of the MPC controller to adapt to unmodelled system dynamics. Based on this evaluation MPC can be seen as a viable control strategy for the FlyUPS, however more research is needed to optimise the MPC approach to yield significant advantages over other control techniques such as decentralised PD control. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
5

Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers

Bundhoo, Vishalini 07 October 2009 (has links)
This thesis presents the preliminary work in the development of a biomimetic actuation mechanism for prosthetic and wearable robotic hand applications. This work investigates the use of novel artificial muscle technology, namely, shape memory alloys. The mechanism developed is based on the combination of compliant tendon cables and one-way shape memory alloy wires that form a set of agonist–antagonist artificial muscle pairs for the required flexion/extension or abduction/adduction of the finger joints. For the purpose of this thesis, an anthropomorphic four degree of freedom artificial testbed was developed with the same kinematic properties as the human finger. Hence, the size, appearance and kinematic architecture of the index finger were efficiently and practically mimicked. The biomimetic actuation scheme was implemented on the anthropomorphic artificial finger and tested, in an ad-hoc fashion, with a simple microcontroller-based pulse width modulated proportional derivation (PWD-PD) feedback controller. The tests were done to experimentally validate the performance of the actuation mechanism as emulating the natural finger’s joints movement. This thesis details the work done for the finger design process as well as the mechanisms and material used to achieve the actuation and control objectives. The results of the experiments done with the actuation platform are also presented.

Page generated in 0.0475 seconds