1 |
Simulation-Based Analysis of Wake Turbulence Encounters in Current Flight OperationsSwol, Christopher Douglas 04 September 2009 (has links)
One way to address the need for increased airspace system capacity is to reduce the separation requirements between aircraft in-flight. A key limiting factor to any reduction in separation is wake turbulence. The potential for aircraft to encounter wake turbulence poses a threat to both safety as well as increased efficiency. This research effort seeks to develop a model that can be used to evaluate the potential for wake encounters in today's flight operations, as well as serve as a tool for evaluating future reduced separation scenarios. The wake encounter model (WEM) achieves this goal by integrating results from NASA's TDAWP wake turbulence prediction model with a flight operations model based on radar flight track data. Unique in this model's design, is the ability to evaluate the potential for wake encounters throughout the terminal area versus previous research which has largely been restricted to areas near the runway. Expanding the model's reach provides not only for a more thorough analysis of potential wake encounters, but also creates an effective tool for evaluating future reduced separation scenarios.
The WEM model was used to evaluate operations at three metropolitan airspaces in the United States: Atlanta, Los Angeles and New York. The results from these model runs indicated that potential wake encounters in today's operations were few. More importantly, the results from the WEM create a baseline for wake turbulence exposure in today's system, by which future scenarios can be compared against as part of any comprehensive reduced separation safety analysis. / Master of Science
|
2 |
Analysis of Potential Wake Turbulence Encounters in Current and NextGen Flight OperationsSchroeder, Nataliya 01 March 2011 (has links)
Wake vortices pose a threat to a following aircraft, because they can induce a roll and compromise the safety of everyone on board. Caused by a difference in pressure between the upper and the lower part of the wings, these invisible flows of air are a major hazard and have to be avoided by separating the aircraft at considerable distances. One of the known constraints in airport capacity for both departure and arrival operations is the large headway resulting from the wake spacing separation criteria. Reducing wake vortex separations to a safe level between successive aircraft can increase capacity in the National Airspace System (NAS) with corresponding savings in delay times.
One of the main goals of the Wake Encounter Model (WEM) described in this thesis is to assess the outcome from future reduced separation criteria in the NAS. The model has been used to test probable encounters in today's operations, and can also be used to test NextGen scenarios, such as Close Parallel Approaches and reduced in-trail separation flights.
This thesis presents model enhancements to account for aircraft turning maneuvers, giving the wake a more realistic shape. Three major airspaces, New York, Southern California and Atlanta, were analyzed using the original and the enhanced WEM to determine if the enhanced model better represents the conditions in today's operations. Additionally, some analysis on the wake lateral travel for closely spaced runways is presented in this thesis. Finally, some extension tools for post -analysis, such as animation tool and various graphs depicting the interactions between wake pairs were developed. / Master of Science
|
Page generated in 0.0229 seconds