1 |
Protein-Engineered Soft Functional Materials for Bioelectronics / Proteintekniska mjuka funktionella material med tillämpningar inom bioelektronikHörberg, Moa January 2024 (has links)
The field of soft electronics is rapidly growing as there is an increased demand for health monitoring using wearable electronics that conforms to biological tissue. To promote sustainability and reduce electronic waste, it is of interest to find ways to reuse low-value-added commodities, such as protein-rich byproducts, for materials in high-value-added technologies that are degradable at end of use. One recognised byproduct from meat production is the abundant protein collagen, or the hydrolysed derivative gelatine. To overcome the limited mechanical properties of gelatine, it can be functionalised with a polymer with previous use in tissue-engineering and battery encapsulation, namely Poly(Glycerol Sebacate)(PGS), to generate the copolymer PGS-G. The work described in this thesis focuses on PGS and PGS-G polymer characterisation by utilising ATR-FTIR and DSC, but also on material characterisation of mechanical and hydration properties, ionic conductivity, and degradation. The results indicate that the successfully synthesised PGS and PGS-G polymers should not be crosslinked completely to achieve the most flexible mechanical properties, but also that crosslinking density should be tuned to suit the application. Moreover, incorporation of gelatine in PGS resulted in increased hydrophilicity for PGS-G. Finally, it was concluded that PGS is suitable for encapsulation whereas PGS-G could be used as an active component. Future work should include degradation studies in vivo and under environmental aerobic conditions to ensure that the polymers are fully biodegradable. / Mjuk elektronik är ett nytt forskningsområde som utvecklas starkt i takt med den ökade efterfrågan på hälsoövervakning med innovativ elektronik som är mjuk och töjbar vilket möjliggör smidig integrering i biologisk vävnad. För att främja hållbarhet och minska elektroniskt avfall så är det av intresse att återanvända lågt värderade handelsvaror, såsom proteinrika restprodukter från industrin, till att skapa funktionella material för värdeskapande teknologier vilka är nedbrytbara efter användning. En välkänd restprodukt från köttproduktion är proteinet kollagen och dess hydrolyserade derivat gelatin. För att förbättra de mekaniska egenskaperna hos gelatin så kan det funktionaliseras med en polymer, vid namn Poly(Glycerol Sebacate)(PGS), som tidigare har använts för att skapa substitut till biologisk vävnad och batteriinkapsling. Denna reaktion genererar den nya polymeren PGS-G. I det här examensarbetet beskrivs karaktärisering av polymererna PGS och PGS-G, som utfördes med ATR-FTIR och DSC, samt karaktärisering av materialets mekaniska och hydrerande egenskaper men även dess ledningsförmåga och nedbrytbarhet. Resultaten indikerar att polymererna PGS och PGS-G ej bör tvärbindas fullständigt för att uppnå optimala mekaniska egenskaper med avseende på flexibilitet men också att tvärbindningen ska justeras beroende på tillämpningen. Vidare bidrar inkorporeringen av gelatin i PGS till en ökad hydrofilicitet i PGS-G. Slutligen visades det att PGS är lämpligt för inkapsling medan PGS-G kan användas som en aktiv komponent. Innan tillämpning behöver ytterligare studier genomföras med avseende på nedbrytbarhet, dels in vivo, dels i aerobiska förhållanden, för att säkerhetsställa att polymererna är fullständigt nedbrytbara.
|
Page generated in 0.0123 seconds