• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptional regulation of the endo-polygalacturonase-encoding gene in Saccharomyces cerevisiae

Louw, Campbell Trout 03 1900 (has links)
Thesis (PhD (Science) (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Wine fermentation with a yeast strain able to degrade grape cell polysaccharides can result in improved processability and an increase in wine quality by improving extraction of essential compounds from the grapes during the maceration stage. Pectin is the only important cell wall polysaccharide that can be degraded by wild-type Saccharomyces cerevisiae strains. Pectin is degraded by a polygalacturonase (PG) encoded by the PGU1 gene (ORF YJR153W). Only certain S. cerevisiae strains can degrade pectin and PG activity is thus strain specific. The lack of activity in certain strains has been attributed to a number of factors: (1) the complete absence of the PGU1 gene, (2) the PGU1 gene is present but the allele is dysfunctional and (3) the PGU1 gene is present but not transcribed. The lack in transcription has been shown to be due to the gene having a dysfunctional promoter or to regulatory differences between strains. Results published in the literature are contradictory. The primary aim of this investigation was to clarify the regulation of PG activity in S. cerevisiae and to determine why there are differences in PG activity between different strains. Regulation of PG activity between several wine and laboratory strains with varying PG activities was compared by looking at the sequence of the PGU1 gene and its promoter as well as transcription levels of this gene and its main transcription factors, TEC1 and STE12. In order to identify regulatory factors influencing PG activity, the S. cerevisiae genome was screened for activators and inhibitors of PG activity. Fourteen inhibitors and two activators of PG activity were identified during this screen. Real-time PCR analysis showed that the PG activity is regulated by transcription of the PGU1 gene. A linear relationship was demonstrated between PGU1 and its two transcription factors TEC1 and STE12. Some of the genes identified as inhibitors of PGU1 transcription are involved in gene silencing by Telomere Position Effect (TPE) indicating that PGU1 is possibly silenced due to its subtelomeric location within 25 kb from the right telomere of chromosome X. Moving the PGU1 gene with its native regulatory machinery to a different position away from its telomere resulted in an increase in PGU1 transcription and PG activity, demonstrating the epigenetic influence on PGU1 regulation. Results from this study suggested that the strain related difference in PGU1 expression occurs at an epigenetic level, with steric hindrance preventing RNA polymerase access to the PGU1 promoter and thus inhibiting transcription of this gene in some strains. Understanding regulation of PG activity can potentially lead to the development of more effective strategies to improve PG degradation by S. cerevisiae. The genetic model describing regulation of PGU1 transcription was extended by this study and a novel mechanism of regulation of PG activity was identified. The secondary aim of this study written as an addendum to this thesis, focussed on degradation of another grape cell wall polysaccharide xylan by recombinant strains of S. cerevisiae. These strains were enabled to degrade this polysaccharide through heterologous expression of novel xylanase encoding genes from various origins. Xylanase activity of the recombinant strains generated was compared. Overexpressing the complete gene xynA of Ruminococcus flavefaciens, the functional domain xynAa or the functional domain xynAc within optimal conditions for these enzymes all conferred very low xylanase activity to S. cerevisiae, with xynAc resulting in the highest xylanase activity. Since overexpression of the R. flavefaciens xynA gene yielded very low activity under optimal conditions activity in wine making conditions would be negligible. The genes XYN2 and XYN4 from Trichoderma reesei and Aspergillus niger respectively yielded higher levels of activity. According to these results, only the expression of XYN2 and XYN4 could have a potential effect on wine An effective strategy for improving pectin degradation can in future potentially be combined with heterologous expression of a xylanase encoding gene in S. cerevisiae in order to engineer a wine yeast strain with improved polysaccharase abilities. / AFRIKAANSE OPSOMMING: Gisting van druiwe met polisakkaried-afbrekende gisrasse kan lei tot ‘n verbetering in wyn prosessering en tot die produksie van hoër kwaliteit wyne deur die ekstraksie van belangrike wynkomponente uit druifselle te verbeter. Pektien is die hoof komponent van die druifselwand wat deur wilde tipe Saccharomyces cerevisiae giste afgebreek kan word en word afgebreek deur ‘n poligalaktoronase (PG) wat deur die PGU1 (YJR153W) geen gekodeer word. Slegs spesifieke gisrasse kan pektien afbreek en die ensiem aktiwiteit is dus ras-spesifiek. Die gebrek aan PG aktiwiteit in sekere rasse is al omskryf as gevolg van die afwesigheid van die geen, die teenwoordigheid van ‘n nie-funksionele alleel of dat die geen wat teenwoordig is nie uitgedruk word nie. Transkripsie is al bewys om nie plaas te vind nie a.g.v. die teenwoordigheid van ‘n nie-funksionele promotor of a.g.v. ‘n verskil in regulering van transkripsie tussen rasse. Sommige studies wat PG regulering ondersoek het, het teenstrydige resultate verkry. Die hoofdoel van hierdie studie was om PG regulering te ondersoek en te bepaal waarom daar verskille in PG aktiwiteit tussen verskillende gisrasse voorkom. Regulering van PG aktiwiteit is ondersoek tussen wyn en laboratorium gisrasse met wisselende vlakke van PG aktiwiteit deur die DNS volgorde van die PGU1 geen en sy promotor, so wel as die DNS volgorde van die geen se hoof transkripsie faktore TEC1 en STE12 te bepaal. Om reguleerders van PG aktiwiteit te identifiseer is die genoom van die gis S. cerevisiae ondersoek om faktore te identifiseer wat PG aktiwiteit aktiveer of inhibeer. “Real-time PCR” het bewys dat PG aktiwiteit gereguleer word deur transkripsie van die PGU1 geen en dat daar ‘n lineêre verhouding tussen die transkripsie van die PGU1 geen en sy twee hoof transkripsie faktore TEC1 en STE12 bestaan. Sommige van die gene wat geïdentifiseer is as inhibeerders van PG aktiwiteit is voorheen bewys om betrokke te wees by die inhibering van transkripsie deur middel van die telomeer posisie effek, dit dui daarop dat transkripsie van die PGU1 geen moontlik geïnhibeer word as gevolg van die geen se subtelomeriese posisie binne 25 kb vanaf die regter telomeer van chromosoom X. Die PGU1 geen is met sy natuurlike regulerings elemente na ‘n ander posisie in die genoom, weg van sy naaste telomeer geskuif, die verandering in posisie van die geen het gelei tot ‘n toename in PG aktiwiteit en transkripsie van die PGU1 geen en het dus bewys regulering word beïnvloed deur ‘n epigenetiese effek. Die resultate van hierdie studie het daarop gedui dat die verskil in transkripsie van die PGU1 geen plaasvind op ‘n epigenetiese vlak waartydens die chromatien struktuur toegang van die RNA polimerase tot die PGU1 geen voorkom en dus word transkripsie van die geen sodoende in sommige rasse voorkom. Die tweede doelwit van hierdie studie het gefokus op die afbraak van ‘n ander komponent van die druif selwand, xilaan, deur S. cerevisiae. Hierdie navorsing vorm ‘n addendum aan die tesis en Xylanase aktiwiteit van verskeie rekombinante rasse is in hierdie studie vergelyk. Baie lae xylanase aktiwiteit is verleen aan rekombinante giste wat die volledige xynA geen gekloneer van die bakteriee Ruminococcus flavefaciens, asook twee aktiewe domeins van die geen, domein xynAa en domein xynAc uitdruk. Van die voorafgenoemde giste het die uitdrukking van die domein xynAc die rekombinante gis ras met die hoogste aktiwiteit tot gevolg gehad. Ooruitdrukking van die gene XYN2 en XYN4 wat gekloneer is van die fungi Trichoderma reesei en Aspergillus niger onderskeidelik, het beide gisrasse wat oor hoë vlakke van xylanase aktiwiteit beskik tot gevolg gehad. Hierdie resultate dui dus daarop dat van die gene ondersoek in die studie, slegs XYN2 en XYN4 potensiaal het om xylanase aktiwiteit van wyngiste te verbeter. Deur die regulering van PG aktiwiteit te bestudeer kan meer effektiewe strategieë potensieel ontwikkel word om PG aktiwiteit in S. cerevisiae te verbeter. Hierdie studie het die genetiese model wat PG regulering omskryf uitgebrei deur ‘n nuwe meganisme van regulering van toepassing op PGU1 te identifiseer. As ons die regulering van die PGU1 goed verstaan kan dit in die toekoms gekombineer word met ‘n effektiewe strategie om ‘n gis aan te pas om xylaan af te breek, om sodoende ‘n wyngis geneties te verbeter om beide xylaan en pektien te kan afbreek.
2

Analysis of endo-polygalacturonase activity in a recombinant yeast containing a reconstituted PGU1 gene

Van Wyk, Herine 03 1900 (has links)
Thesis (MSc (Wine Biotechnology))--University of Stellenbosch, 2009. / The PGU1 gene encodes an endo-polygalacturonase, an enzyme that degrades pectin. Although the presence and function of this gene is well characterized in Saccharomyces cerevisiae, its regulation is very complex and not yet fully understood. Yeast producing a highly active polygalacturonase (PG) during alcoholic fermentation could potentially improve filtration and turbidity and also enhance extraction of certain aroma compounds. This could replace the addition of expensive commercial enzyme preparations that often contain unwanted enzymes. The first objective of this study was to evaluate PGU1 expression in recombinant strains of S. cerevisiae that originally lacked the PGU1 gene. A functional PGU1 gene and its promoter were successfully re-introduced into their native position in the genomes of five wine strains. Three of these strains recovered PG activity while two did not transcribe the gene and subsequently lacked activity. The three strains that recovered activity were used in microvinification experiments to determine the effect of PG-producing yeast on the aroma profile of the wine. No significant differences were observed in the volatile compounds production between the recombinants and their respective wild types, but some tendencies arose, especially for the monoterpene geraniol. The second objective of this study was to analyze the PGU1 gene and promoter from Saccharomyces paradoxus RO88 (a strain that exhibits high PG activity) and to compare it to those of S. cerevisiae S288C in order to identify differences that could potentially be responsible for the difference in their PG activities. Comparison of the gene sequences revealed several amino acid differences, one of which was in the peptide secretion signal. Analyses of the promoters also indicated some potentially important differences. Furthermore, S. cerevisiae strain VIN13, RO88 as well as two interspecies hybrids (all displaying varying PG activities) were compared under winemaking conditions. Clear differences were observed for the production of certain compounds. RO88 and the hybrids produced higher concentrations of certain volatile compounds, although they were not strong fermenters. Two recombinants, each containing a PGU1-overexpressing plasmid (one with the PGU1 gene from S. paradoxus and the other from S. cerevisiae), were also used in vinification to determine the effects of the different PGU1 gene on the aroma profile of the wine. Unfortunately, the plasmids were unstable and lost during the fermentation. Nevertheless, some tendencies were observed that indicated possible higher production of certain compounds by the recombinants compared to their wild types. This study identified that regulation of the PGU1 gene differs between strains with different genetic backgrounds. Certain differences were observed in the PGU1 gene and promoter sequences between S. cerevisiae and S. paradoxus that could potentially be the reason for the difference in their PG activities. From an oenological point of view, the presence of PGU1 in the genome of a fermenting strain tends to increase the aromatic potential of wine. These results provide a good platform for further studies on the PGU1 gene.

Page generated in 0.026 seconds