781 |
The effect of boron on phase relations in the granite-water system.Chorlton, Lesley B. January 1973 (has links)
No description available.
|
782 |
SEEDING HYDRATE FORMATION IN WATER-SATURATED SAND WITH DISSOLVED-PHASE METHANE OBTAINED FROM HYDRATE DISSOLUTION: A PROGRESS REPORTWaite, W.F., Osegovic, J.P., Winters, W.J., Max, M.D., Mason, D.H. 07 1900 (has links)
An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument
(GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated
sand from methane dissolved in water. Water circulates through a relatively warm
source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters
a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand
pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the
circulating water, and hydrate particles from the source chamber entrained in the circulating water
can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial
results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing
homogeneous hydrate formation throughout the sand pack are being developed.
|
783 |
PARTITION OF PEPSINOGEN FROM THE STOMACH OF RED PERCH (SEBASTES MARINUS) BY AQUEOUS TWO PHASE SYSTEMSZhao, Lisha 29 November 2011 (has links)
The purification of pepsinogen from the stomach of red perch using aqueous two phase systems (ATPS) formed by polyethylene glycol (PEG) and salt at 4°C was optimized. Salt type, salt concentration, PEG molecular weight and PEG concentration had significant effects on total volume (TV), volume ratio (VR), enzyme activity (AE), protein content (CP), specific activity (SA), purification fold (PF) and recovery yield (RY). (NH4)2SO4 at 15% w/w concentration was selected as the optimum salt type and concentration. PEG 1500 at 18% w/w concentration was selected as the optimum PEG molecular weight and concentration. 15% (NH4)2SO4-18% PEG 1500, the optimal ATPS, was compared with ammonium sulfate fractionation (ASF). ATPS gave better partition of pepsinogen (SA of 5.40 U/mg, PF of 5.20 and RY of 86.6%) than ASF (SA of 2.55 U/mg, PF of 2.46, RY of 70.4%). / This is the electronic copy of partition of pepsinogen in aqueous two phase system method.
|
784 |
Brain Coordination Dynamics in Altered States of Consciousness in ChildrenNenadovic, Vera 13 January 2014 (has links)
The brain is a complex dynamic and self-organizing system. Normal brain function emerges from synchronized neuronal firing between local neurons which are integrated into large scale networks via white matter tracts. Normal brain function and consciousness arise from the continual integration and dissolution of neuronal networks, and this fluctuation in synchronization is termed variability. Brain electrical activity is recorded as local field potentials using electroencephalography (EEG). The phase synchrony and variability of EEG waveforms can be quantified. The healthy brain exhibits a relatively low degree of phase synchrony and a high degree of variability.
Clinicians are interested in using a complex system approach to brain function to provide dynamic information on neuronal physiology and pathology not available by other evaluation methods. A common challenge in paediatric critical care is evaluation of the comatose child post brain injury. Coma and medical interventions confound the clinical examination making monitoring and prognostication of outcome difficult. Brain cells and white matter tracts are disrupted post injury altering the phase synchrony between neuronal networks. It is proposed in this thesis that the estimation of the variability in EEG phase synchrony can evaluate paediatric brain function.
The EEG recordings of normal children and patients in coma post brain injury are used, in a series of studies, to test the main hypothesis that slow EEG wave brain states associated with brain injury have higher magnitudes of EEG phase synchrony and lower variability values than those of EEG waves associated with consciousness. Further, the effects of age, brain development brain and the effect of a conscious slow wave EEG state (hyperventilation) on phase synchrony and variability are evaluated.
Results of the studies showed that EEG phase synchrony is increased in all slow wave states and is highest in comatose children with poor neurological outcome. Younger children’s brains have higher phase synchrony than older children. The variability of the EEG phase synchrony differentiates between the awake (higher values) and unconscious states (lower values). Physiologic models underlying EEG phase synchrony are discussed. The EEG phase synchrony and variability measures provide new insight into paediatric brain function.
|
785 |
Mechanistic aspects of phase transfer catalysisRay, Charles Wesley 12 1900 (has links)
No description available.
|
786 |
Kinetics of the solid-liquid phase-transfer catalyzed deprotonation and N-alkylation of acetanilideWyatt, Victor T. 08 1900 (has links)
No description available.
|
787 |
An investigation of omega-phase catalysisFair, Barbara E. 05 1900 (has links)
No description available.
|
788 |
Phase equilibria in the argon-helium and argon-hydrogen systemsMullins, Joseph Chester 05 1900 (has links)
No description available.
|
789 |
Development of a Compositional Reservoir Simulator for Asphaltene Precipitation Based on a Thermodynamically Consistent ModelGonzalez Abad, Karin G 16 December 2013 (has links)
A rigorous three-phase asphaltene precipitation model was implemented into a compositional reservoir simulator to represent and estimate the reduction of porosity and permeability responsible for productivity impairment. Previous modeling techniques were computationally inefficient, showed thermodynamic inconsistencies, or required special laboratory experiments to characterize the fluid.
The approach developed in this study uses a cubic equation of state to solve for vapor/liquid/liquid equilibrium (VLLE), where asphaltene is the denser liquid phase. Precipitation from the liquid mixture occurs as its solubility is reduced either by changes in pressure (natural depletion), or composition (i.e. mixing resulting from gas injection). The dynamic relationship between phase composition, pressure, and porosity/permeability is modeled with a finite differences reservoir simulator and solved using an implicit-pressure, explicit-saturations and explicit-compositions (IMPESC) direct sequential method.
The robustness of this model is validated by the ability to reproduce experimental asphaltene precipitation data while predicting the expected phase behavior envelope and response to key thermodynamic variables (i.e. type of components and composition, pressure and, temperature).
The three-phase VLLE flash provides superior thermodynamic predictions compared to existing commercial techniques. Computer performance analysis showed that the model has a comparable cost to existing asphaltene precipitation models, taking only 1.1 more time to calculate but requiring fewer tunable parameters. The VLLE flash was in average 4.47 times slower compared to a conventional two-phase vapor/liquid flash.
This model has the speed of a flash calculation while maintaining thermodynamic consistency, enabling efficient optimization of reservoir development strategies to mitigate the detrimental effects of asphaltene precipitation on productivity.
|
790 |
Characterization of Zr-Fe-Cu Alloys for an Inert Matrix Fuel for Nuclear Energy ApplicationsBarnhart, Brian A. 16 December 2013 (has links)
An ultra-high burnup metallic inert matrix nuclear fuel concept is being characterized and evaluated by Lawrence Livermore National Laboratory based on a metal matrix fuel concept originally developed at the Bochvar Institute in Russia. The concept comprises a dispersion of uranium metal microspheres in a Zr-based alloy matrix that provides thermal bonding between the fuel particles and the cladding material. The objective of this study was to experimentally evaluate both the microstructural and thermophysical properties of Zr-Fe-Cu alloys. The experiments and analyses described were divided into three main parts, nominally based on the analysis methods used to examine the alloys.
An Electron Probe Microanalyzer (EPMA) was used to characterize the metallurgical properties of the proposed matrix alloys. The groups of alloys were cast using a high temperature inert atmosphere furnace. The cast alloys showed the expected combination of phases with the exception of the ZrFe2 Laves phase which was predicted for the Zr-12Fe-15Cu1 alloy but was not detected. The Zr-12Fe-5Cu alloy consisted of a Zr solution phase dispersed in a matrix of two different intermetallic phases. The second alloy, Zr-12Fe-10Cu, did not produce a homogenous mixture and consisted of two distinct phase morphologies. The top half of the sample was Zr rich and contained Zr precipitates dispersed in a matrix of intermetallic compounds while the bottom half consisted solely of intermetallic compounds. The third alloy, Zr-12Fe-15Cu, was comprised of four different intermetallic phases three of which had the same apparent Zr_(2)(Fe,Cu) structure but had distinct phase morphologies based on the Backscatter Electron (BSE) images.
Upon determining the phase morphologies of each of the fabricated alloys Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) were used to measure phase transformation and melting temperatures. Little difference was observed between the as-cast and annealed samples. The transitions shifted slightly to higher temperatures and the annealed Zr-12Fe-15Cu alloy only had two transitions compared to three seen in the as-cast samples. Slight changes were observed in the melting temperatures between the as-cast and annealed alloys. Zr-12Fe-5Cu had the largest melting temperature (886.3°C) while Zr-12Fe-10Cu had the smallest melting temperature (870°C). The third alloy, Zr-12Fe-15Cu, had a melting point just below that of Zr-12Fe-5Cu at 882.7°C.
Light Flash Analysis (LFA) was implemented to determine the low temperature (20-260°C) thermal diffusivity values of each alloy. The as-cast measurements were more precise than the annealed samples, most likely the result of non-ideal sample integrity prior to loading. Each of the three alloys showed a linear increase in thermal diffusivity over the temperature range. Values for Zr-12Fe-5Cu ranged from 3.54 ± 0.06 mm2/s to 4.42 ± 0.10 mm^(2)/s. The Zr-12Fe-10Cu alloy had maximum and minimum values of 4.19 ± 0.22 mm^(2)/s and 3.17 ± 0.16 mm^(2)/s, respectively. Lastly, Zr-12Fe-15Cu had the largest thermal diffusivity ranging from 3.52 ± 0.15 mm^(2)/s at 20°C to 4.64 ± 0.16 mm_(2)/s at 260°C. Overall, the data from the LFA measurements showed that the Zr-Fe-Cu alloy system had similar diffusivity values compared to other common reactor materials.
|
Page generated in 0.046 seconds