• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 206
  • 70
  • 53
  • 26
  • 25
  • 16
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 4
  • Tagged with
  • 1235
  • 304
  • 199
  • 191
  • 184
  • 127
  • 123
  • 117
  • 112
  • 91
  • 82
  • 76
  • 70
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Discovery of protein phosphorylation biomarkers in serum of schizophrenia patients

Jaros, Julian Aurel Jeremias January 2012 (has links)
No description available.
202

Insights into the Interactions between CFTR and Small Molecule Modulators

Pasyk, Stanislav 01 April 2014 (has links)
Cystic Fibrosis (CF) is a life-threatening autosomal recessive disease affecting 1:3600 children born in Canada. CF is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. The most common disease causing mutation is a deletion of residue F508, resulting in a structurally compromised protein which is retained in the endoplasmic reticulum and targeted for proteasomal degradation. Therapeutic strategies currently being pursued to alleviate the afflictions caused by this and other mutants include the use of corrector compounds to modify the surface expression of the channel, and potentiator compounds to increase cAMP-mediated channel activity. Despite the discovery of a number of small molecules affecting CFTR, much is still unknown about the nature of these interactions. This thesis contains the investigation of two potentiators: VRT-532 and VX-770, and two correctors VX-809 and C18. We assessed the consequences of interactions with these drugs on CFTR channel activity, ATPase activity and phosphorylation. We demonstrated that VRT-532 binds directly to mutant CFTR to modify its channel and ATPase activity. VX-770, known to bind directly to CFTR, can stimulate channel activity in the absence of cAMP stimulation in baby hamster kidney (BHK) cells. Correctors VX-809 and C18, based off the same molecular scaffold, are both capable of acutely augmenting cAMP-stimulated channel activity, providing evidence for potentiator activities in these compounds. Quantitative mass spectrometry (MS) techniques demonstrate a defect in phosphorylation at Ser-660 in the regulatory (R) domain in the major mutant. Treatment with C18 was unable to repair this defect. These novel findings regarding interactions between several small molecules and CFTR contributes to the understanding of the mechanism of action of these compounds, and will help identify how they may be modified for greater efficacy to improve the treatment of CF disease.
203

Insights into the Interactions between CFTR and Small Molecule Modulators

Pasyk, Stanislav 01 April 2014 (has links)
Cystic Fibrosis (CF) is a life-threatening autosomal recessive disease affecting 1:3600 children born in Canada. CF is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. The most common disease causing mutation is a deletion of residue F508, resulting in a structurally compromised protein which is retained in the endoplasmic reticulum and targeted for proteasomal degradation. Therapeutic strategies currently being pursued to alleviate the afflictions caused by this and other mutants include the use of corrector compounds to modify the surface expression of the channel, and potentiator compounds to increase cAMP-mediated channel activity. Despite the discovery of a number of small molecules affecting CFTR, much is still unknown about the nature of these interactions. This thesis contains the investigation of two potentiators: VRT-532 and VX-770, and two correctors VX-809 and C18. We assessed the consequences of interactions with these drugs on CFTR channel activity, ATPase activity and phosphorylation. We demonstrated that VRT-532 binds directly to mutant CFTR to modify its channel and ATPase activity. VX-770, known to bind directly to CFTR, can stimulate channel activity in the absence of cAMP stimulation in baby hamster kidney (BHK) cells. Correctors VX-809 and C18, based off the same molecular scaffold, are both capable of acutely augmenting cAMP-stimulated channel activity, providing evidence for potentiator activities in these compounds. Quantitative mass spectrometry (MS) techniques demonstrate a defect in phosphorylation at Ser-660 in the regulatory (R) domain in the major mutant. Treatment with C18 was unable to repair this defect. These novel findings regarding interactions between several small molecules and CFTR contributes to the understanding of the mechanism of action of these compounds, and will help identify how they may be modified for greater efficacy to improve the treatment of CF disease.
204

Secretion, phosphorylation, and cell surface localization of a major transformation-sensitive phosphoprotein, identified as osteopontin, in normal and transformed cells

Nemir, Mohamed January 1989 (has links)
No description available.
205

The Effect of Noxa Serine-13 Phosphorylation on Hyperthermia-Induced Apoptosis

Morey, Trevor 13 February 2012 (has links)
Regulation of apoptosis is critical for cell survival during mild stress and for proper removal of damaged cells during severe stress including hyperthermia. Previous studies have shown that knockdown of the BH3-only protein Noxa prevents hyperthermia-induced Mcl-1 degradation and activation of apoptosis. Noxa is a pro-apoptotic BH3-only protein that is able to selectively bind to and disable anti-apoptotic Mcl-1. Phosphorylation of Noxa on serine-13 by the cyclin-dependent kinase CDK5 inhibits the apoptotic function of Noxa. In this study I investigated whether hyperthermia is able to induce apoptosis by preventing Noxa phosphorylation, due to reduced CDK5 activity, leading to activation of Noxa. I was able to demonstrate that both the phosphorylation status and solubility of CDK5 is reduced during hyperthermia. Furthermore, overexpression of a non-phosphorylatable Noxa (S13A) resulted in a significant decrease in cell viability and increase in caspase-3 activity compared to overexpression of wild-type Noxa at 37°C. However, I was unable to detect in vivo phosphorylation of Noxa serine-13 in lymphoid cells and therefore was unable to conclude whether or not hyperthermia affects the phosphorylation status of Noxa.
206

Structure and mechanism of protein tyrosine phosphatase-like phytases

Gruninger, Robert J, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
The structure and mechanism of the Protein Tyrosine Phosphatase-like Phytases (PTPLPs) from Selenomonas ruminantium (PhyAsr) and Mitsuokella multacida (PhyAmm) were investigated using a combination of enzyme kinetics, site-directed mutagenesis, and X-ray crystallography. I show that PTPLPs use a classical protein tyrosine phosphatase catalytic mechanism and adopt a core PTP fold. Several unique structural features of PTPLPs confer specificity for inositol phosphates. The effect of ionic strength and oxidation on the kinetics and structure of PTPLPs was investigated. The structural consequences of reversible and irreversible oxidation on PTPLPs and PTPs are compared and discussed. We determine the structural basis of substrate specificity in PTPLPs and propose a novel reaction mechanism for the hydrolysis of inositol polyphosphates by PTPLPs. Finally, the structure and function of a unique tandemly repeated phytase has been determined. We show that the active sites of the tandem repeat possess significantly different specificities for inositol polyphosphate. / xix, 148 leaves : ill. (some col.) ; 29 cm
207

Expanding our knowledge of protein tyrosine phosphatase-like phytases : mechanism, substrate specificity and pathways of myo-inositol hexakisphosphate dephosphorylation

Puhl, Aaron A., University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
A novel bacterial protein tyrosine phosphatase (PTP)-like enzyme has recently been isolated that has a PTP-like active site and fold and the ability to dephosphorylate myo-inositol hexakisphosphate. In order to expand our knowledge of this novel class of enzyme, four new representative genes were cloned from 3 different anaerobic bacteria related to clostridia and the recombinant gene products were examined. A combination of site-directed mutagenesis, kinetic, and high-performance ion-pair chromatography studies were used to elucidate the mechanism of hydrolysis, substrate specificity, and pathways of Ins P6 dephosphorylation. The data indicate that these enzymes follow a classical PTP mechanism of hydrolysis and have a general specificity for polyphosphorylated myo-inositol substrates. These enzymes dephosphorylate Ins P6 in a distributive manner, and have the most highly ordered pathways of sequential dephosphorylation of InsP6 characterized to date. Bioinformatic analyses have indicated homologues that are involved in the regulation of cellular function. / x, 138 leaves ; 29 cm.
208

Understanding Postranslational Modifications Involved in Adi3 Programmed Cell Death Signaling

Avila Pacheco, Julian Ricardo, 1983- 14 March 2013 (has links)
Programmed cell death (PCD) is an active process by which organisms coordinate the controlled destruction of cells. In tomato, the protein kinase Adi3 (AvrPto-dependent Pto-interacting kinase 3), acts as a negative regulator of PCD and shares important functional homologies with the mammalian anti-apoptotic AGC kinase PBK/Akt. Adi3 was originally identified as an interactor of the complex formed by the tomato resistance protein Pto and the Pseudomonas syringae pv. tomato (Pst) effector protein AvrPto. The complex formed by AvrPto and Pto causes a resistance response characterized by a rapid form of PCD that limits the spread of Pst and prevents the onset of the tomato bacterial speck disease. In an effort to characterize the mechanisms by which Adi3 regulates PCD, we identified Adi3 interacting partners in a Y2H screen. Here, I describe the interaction of Adi3 with two interacting partners identified: the Sucrose Non-fermenting (SNF1) kinase complex (SnRK) which is a eukaryotic master regulator of energy homeostasis and the E3 RING Ubiquitin ligase AdBiL. Using a combination of in vitro and in vivo approaches I found that AdBiL is an active ubiquitin ligase that ubiquitinates Adi3. Interestingly, Adi3 was found to be degraded in a proteasome-dependent manner suggesting ubiquitination could play a role in its degradation. On the other hand, Adi3 was found to inhibit the SnRK complex by directly interacting with its catalytic subunit as well as by phosphorylating the regulatory subunit SlGal83 at Ser26. SlGal83 is phosphorylated at multiple sites in vivo, and this phosphorylation state, as well as its intracellular localization was found to depend on a myristoylation signal present at its N-terminus. Phosphorylation at Ser26 by Adi3 was found to alter the localization of this subunit in a myristoylation-dependent manner. The interactions studied in this dissertation provide additional evidence on the functional homologies shared by Adi3 and PKB. In addition, the regulatory control of SnRK activity and cellular localization offers a novel connection between pathways involved in energy homeostasis and pathogen-mediated PCD.
209

In vivo regulatory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase from developing castor oil seeds

O'LEARY, BRENDAN MICHAEL 07 September 2011 (has links)
PEPC [PEP(phosphoenolpyruvate) carboxylase] is an essential and tightly controlled enzyme located at the core of plant C-metabolism. It fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and N-assimilation. In plants, a small multigene family encodes several closely related plant-type PEPC (PTPC) isozymes along with a distantly related bacterial-type PEPC (BTPC) isozyme. The PTPCs are well studied ~110-kDa subunits that typically exist as a homotetramer (Class-1 PEPC). By contrast, little is known about the larger ~118-kDa BTPC isozyme except that it occurs in developing castor (Ricinus communis) endosperm in tight association with PTPC subunits as a ~900-kDa hetero-octameric complex (Class-2 PEPC) that is greatly desensitized to metabolic effectors compared to Class-1 PEPC. This thesis elucidates the physiological purpose of the BTPC subunits by examining their structure/function relationship within Class-2 PEPC and identifying mechanisms of post-translational control. Recombinant expression and purification of the castor bean BTPC revealed unusual physical and kinetic properties including a remarkable insensitivity to metabolic effectors and a dependence upon PTPC subunits for structural stability. The first purification of a non-proteolyzed plant Class-2 PEPC complex was performed, and the kinetic analysis determined that the BTPC and PTPC subunits have complimentary catalytic properties. The BTPC subunits’ high Km(PEP) and desensitization to metabolic effectors may function as a metabolic overflow mechanism for sustaining flux from PEP to malate when PTPC subunits become feedback inhibited. An anti-PTPC co-immunopurification strategy was utilized to highly enrich non-proteolyzed BTPC from developing castor endosperm for downstream immunological and mass spectrometric analysis. BTPC was in vivo phosphorylated at multiple novel sites, identified by mass spectrometry as Thr4 or 5, Ser425 and Ser451. Phosphosite-specific antibodies towards Ser425 and Ser451 confirmed the existence of these sites in vivo and comparisons of Ser425 phosphorylation patterns established that the castor BTPC and PTPC phosphorytation sites are regulated independently. Phosphomimetic mutants of Ser425 caused BTPC inhibition by increasing its Km(PEP) and sensitivity to feedback inhibition. These results establish a novel mechanism of PEPC control whose implications within plant carbon metabolism are discussed. / Thesis (Ph.D, Biology) -- Queen's University, 2011-09-04 16:46:22.024
210

Temperature-modulation of protein phosphorylation in cell-free extracts of alfalfa

Labbé, Etienne. January 1996 (has links)
The effects of temperature on a 58-kDa phosphoprotein (PP58) have been examined in cell-free extracts of two alfalfa (Medicago sativa L.) cultivars, Apica and Trek. In the extracts prepared without the use of Triton X-100, PP58 is present in a 12,000 x g (P12), 28,000 x g (P28) and 100,000 x g (P100) pellets but is enriched in the P28 fraction. In these fractions PP58 is substantially and equally phosphorylated at both 4° and 24°C. When extracts are prepared in the presence Triton X-100, PP58 is present in the 28,000 x g supernatant (TXS fraction) is extensively dephosphorylated at 24°C but highly phosphorylated at 4°C. The phosphorylation of this protein increased sharply as temperature declined below 12°C, and was 15 times greater at 0° than at 24°C. The phosphorylation level doubled between 12° and 8°C and again between 8° and 4°C. Thus temperature effect is not mediated by Q10 effect. Interestingly, temperature-response curve of PP58 phosphorylation is similar to that of the reported cold-induced calcium influx (Plant Cell 7: 321-331). Labeling reactions carried out in the presence of [gamma-35S]thioATP indicated that low temperature inhibited the dephosphorylation reaction. These results were not mimicked at room temperature by the protein phosphatase 1 and 2A inhibitor okadaic acid. In reactions performed at 4°C, addition of calcium caused a 2-fold increase in the phosphorylation of PP58. A decrease in phosphorylation was observed when equimolar amounts of EGTA were added in the presence of MgCl 2 or MnCl2, but not in the presence of CaCl2, suggesting that this protein is phosphorylated by a calcium-dependent protein kinase. These results are consistent with the suggestion that PP58 and its putative kinase are membrane-localized whereas the putative PP58 phosphatase is a loosely-associated membrane peripheral protein lost to the supernatant during fractionation. We suggest that PP58 could be involved in low te

Page generated in 0.0212 seconds