321 |
Photochemical Synthesis of Mono and Bimetallic Nanoparticles and Their Use in CatalysisPardoe, Andrea 04 May 2011 (has links)
Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features.
Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult.
One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized photochemically on different supports including TiO2 and hydrotalcite (HTC). Their catalytic efficiency was tested using alcohol oxidations. Different silver nanoparticle shapes (decahedra and plates) were compared with the spheres to see the different catalytic efficiencies.
|
322 |
<i>In vitro</i> studies to assess the potential of Quercetin as a topical sunscreen; photooxidative properties, photostability and inhibition of UV radiation-mediated skin damageFahlman, Brian Micheal 30 March 2011
Protection from the negative effects of solar radiation can be achieved by wearing protective clothing, avoiding exposure to sunlight or by the application of topical sunscreens. In this thesis, a number of studies were designed to determine if quercetin is suitable for use as a topical sunscreen.<p>
The first objective was to determine if quercetin could protect against UV-induced lipid oxidation. Quercetin is twice as effective at preventing UVB-induced oxidation as preventing UVA-induced oxidation.The difference between UVA- and UVB- induced oxidation is believed to be due to the presence of an excited state form of quercetin in the UVA system. <p>
The second objective was to determine the UV photostability of quercetin in solution. Three photoproducts of quercetin form regardless of whether UVA or UVB radiation is used. These photoproducts are 2,4,6-trihydroxybenzaldehyde, quercetin depside and hydroxytyrosol. . The slow rate of formation, less than 20% loss of starting material over 11 hours, and non-toxic nature of the photoproducts indicate that photostability of quercetin is not an obstacle to its use as a sunscreen.<p>
The third objective was to determine the ability of quercetin to inhibit photosensitization by ketoprofen. Quercetin was shown to be effective in preventing decomposition of ketoprofen until it was consumed in the formation of the three quercetin photoproducts. This abilty of quercetin to prevent ketoprofen photosensitization indicates a beneficial effect for the use of quercetin as a topical sunscreen.<p>
The fourth objective was to determine if quercetin can prevent UV-induced damage in a biological system. Quercetin was found to significantly reduce secretion of matrix metalloprotease 1 (MMP-1) upon UVA or UVB exposure, but had no effect on secretion of tumor necrosis factor á (TNF-á) in HaCaT cells. , Topical application of quercetin to UVA or UVB exposed EpiDerm skin mimics significantly reduced both MMP-1 and TNF-á secretion.<p>
These results indicate that quercetin is effective in decreasing or eliminating several harmful effects of UVA and UVB radiation in the skin without major loss of starting material and without formation of toxic photoproducts. As such, quercetin appears to be a good candidate for inclusion into topical sunscreen formulations.
|
323 |
Photochemical Strategies for the Synthesis of Advanced MaterialsBillone, Paul 19 April 2011 (has links)
This thesis describes the study of a variety of nanoscale materials and the development of novel synthetic strategies for their production. While the focus and bulk of this study have been directed specifically at subwavelength lithography, a significant portion of this thesis research involves nanoparticle synthesis, characterization, and functionalization.
Put in very simple terms, optical lithography is a process where a beam of light, focused in a specific pattern, is used to generate a physical pattern on a solid substrate. This technology forms the basis for almost all microchip production in the world at the present time. As demand for faster and more powerful chips increases, the need to further miniaturize the patterns while minimizing cost has become very important.
Multiple photochemical systems were developed in the search for non-reciprocal photochemistry at 193 nm to increase the resolution of lithographic processes at that wavelength. One approach, based on anthracene sensitization of sulfonium salts for acid generation, used photochemically reversible 4+4 aromatic cycloaddition reactions to introduce the non-linear photochemistry. A second approach took advantage of the photochemistry of N-methylphenothiazine and provided the first true example of a lithographically-relevant multi-photon acid generating process.
Since all of the systems we studied used sulfonium salts as the acid generating species, we also looked at the photochemistry of the salts themselves. We evaluated the structural effects of the salts on their direct photochemistry and the implications for sensitized multi-photon photochemistry. We found that the identity of the anion plays a significant role in both processes and propose a new photochemical mechanism for acid generation that involves a charge transfer excitation process.
We also describe the synthesis and characterization of novel fluorescent silver nanoparticles, both in solution and polymer films. We show that the fluorescent images can be patterned easily and preliminary results show that photolithography based on nanoparticle formation may be possible. This latter approach could provide a facile route to nanoparticle-embedded functional materials. This work with nanoparticles was inspired partly by earlier work, also presented herein, on semiconductor nanoparticles and their interactions with disulfide ligands.
|
324 |
Photochemical Synthesis of Mono and Bimetallic Nanoparticles and Their Use in CatalysisPardoe, Andrea 04 May 2011 (has links)
Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features.
Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult.
One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized photochemically on different supports including TiO2 and hydrotalcite (HTC). Their catalytic efficiency was tested using alcohol oxidations. Different silver nanoparticle shapes (decahedra and plates) were compared with the spheres to see the different catalytic efficiencies.
|
325 |
<i>In vitro</i> studies to assess the potential of Quercetin as a topical sunscreen; photooxidative properties, photostability and inhibition of UV radiation-mediated skin damageFahlman, Brian Micheal 30 March 2011 (has links)
Protection from the negative effects of solar radiation can be achieved by wearing protective clothing, avoiding exposure to sunlight or by the application of topical sunscreens. In this thesis, a number of studies were designed to determine if quercetin is suitable for use as a topical sunscreen.<p>
The first objective was to determine if quercetin could protect against UV-induced lipid oxidation. Quercetin is twice as effective at preventing UVB-induced oxidation as preventing UVA-induced oxidation.The difference between UVA- and UVB- induced oxidation is believed to be due to the presence of an excited state form of quercetin in the UVA system. <p>
The second objective was to determine the UV photostability of quercetin in solution. Three photoproducts of quercetin form regardless of whether UVA or UVB radiation is used. These photoproducts are 2,4,6-trihydroxybenzaldehyde, quercetin depside and hydroxytyrosol. . The slow rate of formation, less than 20% loss of starting material over 11 hours, and non-toxic nature of the photoproducts indicate that photostability of quercetin is not an obstacle to its use as a sunscreen.<p>
The third objective was to determine the ability of quercetin to inhibit photosensitization by ketoprofen. Quercetin was shown to be effective in preventing decomposition of ketoprofen until it was consumed in the formation of the three quercetin photoproducts. This abilty of quercetin to prevent ketoprofen photosensitization indicates a beneficial effect for the use of quercetin as a topical sunscreen.<p>
The fourth objective was to determine if quercetin can prevent UV-induced damage in a biological system. Quercetin was found to significantly reduce secretion of matrix metalloprotease 1 (MMP-1) upon UVA or UVB exposure, but had no effect on secretion of tumor necrosis factor á (TNF-á) in HaCaT cells. , Topical application of quercetin to UVA or UVB exposed EpiDerm skin mimics significantly reduced both MMP-1 and TNF-á secretion.<p>
These results indicate that quercetin is effective in decreasing or eliminating several harmful effects of UVA and UVB radiation in the skin without major loss of starting material and without formation of toxic photoproducts. As such, quercetin appears to be a good candidate for inclusion into topical sunscreen formulations.
|
326 |
Synthesis, structural characterization and photophysical properties of lanthanide complexes containing polydentate amide ligandsLai, Po-wan. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references.
|
327 |
Design, synthesis, photochromic and photophysical studies of dithienylethene-containing heteroacenes, alkynyls, diimines and theirmetal complexesWong, Hok-lai., 黃學禮. January 2011 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
328 |
Syntheses and photochemistry of monomeric platinum (II) complexes尹錦濤, Wan, Kam-to. January 1990 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
|
329 |
Photophysics and photochemistry of some platinum (II) complexes with polypyridine ligands鄭睦奇, Cheng, Luk-ki. January 1996 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
330 |
A Hammett study on the termination step of the indirect photooxygenation of Trans-4,4'- disubstituted-a,a'-dimethylstilbenesKotsonis, Frank N. January 1969 (has links)
No description available.
|
Page generated in 0.0218 seconds