• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and remote control of a Gantry mechanism for the SCARA robot

Surinder Pal, 15 May 2009 (has links)
Remote experimentation and control have led researchers to develop new technologies as well as implement existing techniques. The multidisciplinary nature of research in electromechanical systems has led to the synergy of mechanical engineering, electrical engineering and computer science. This work describes the design of a model of a Gantry Mechanism, which maneuvers a web-cam. The user controls virtually the position of end-effecter of the Gantry Mechanism using a Graphical User Interface. The GUI is accessed over the Internet. In order to reduce the unbalanced vibrations of the Gantry Mechanism, we investigate the development of an algorithm of input shaping. A model of the Gantry Mechanism is built, and it is controlled over the Internet to view experimentation of the SCARA Robot. The system performance is studied by comparing the inputs such as distances and angles with outputs, and methods to improve the performance are suggested.
2

Design and remote control of a Gantry mechanism for the SCARA robot

Surinder Pal, 15 May 2009 (has links)
Remote experimentation and control have led researchers to develop new technologies as well as implement existing techniques. The multidisciplinary nature of research in electromechanical systems has led to the synergy of mechanical engineering, electrical engineering and computer science. This work describes the design of a model of a Gantry Mechanism, which maneuvers a web-cam. The user controls virtually the position of end-effecter of the Gantry Mechanism using a Graphical User Interface. The GUI is accessed over the Internet. In order to reduce the unbalanced vibrations of the Gantry Mechanism, we investigate the development of an algorithm of input shaping. A model of the Gantry Mechanism is built, and it is controlled over the Internet to view experimentation of the SCARA Robot. The system performance is studied by comparing the inputs such as distances and angles with outputs, and methods to improve the performance are suggested.
3

Microcontroller-based Multiport Communication System For Digital Electricity Meters

Bestepe, Firat 01 December 2004 (has links) (PDF)
This thesis explains the design of a microcontroller-based device, which provides an efficient and practical alternative for the remote reading of digital electricity meters over Public Switch Telephone Network (PSTN). As an alternative application, a system is constructed providing file transfer capability to the PC connected to the port of implemented device in addition to remote reading of digital electricity meters. This thesis also provides detailed explanations about the basics of serial asynchronous communication over modem for PICs (peripheral interface controllers) together with description of each component included by the constructed system, which can be used in energy metering sector commonly.
4

Development Of A Pc Numerical System For High Voltage Sphere Gap Control

Kasap, Onur 01 June 2005 (has links) (PDF)
In this thesis, a high precision motion and position control system has been developed and applied to a high voltage sphere gap control and measurement system. The system is able to support up to 3-axes position and motion control. The control system includes a microcontroller card, three DC servo motor driver cards and a data storage unit. To provide communication between computer and motion control system, the Universal Serial Bus (USB) port is used. The microcontroller card is equipped with an USB interface and a PIC (Peripheral Interface Controllers) microcontroller. This microcontroller controls the dedicated motion control processors (LM629), on servo motor driver cards and read/write operations of data storage unit, which consists of a Multi Media Card.
5

Controlling a photovoltaic module's surface temperature to ensure high conversion efficiency

Ozemoya, Augustine 06 1900 (has links)
M. Tech. (Engineering, Electrical, Department Electronic Engineering, Faculty of Engineering and Technology), Vaal University of Technology / In order to facilitate sustainable development, it is necessary to further improve and increase the energy efficiency and use of renewable energy and its related technologies. The main limiting factors to the extensive use of photovoltaic (PV) modules include the high initial investment cost and the relatively low conversion efficiency. However, other factors, such as an increase in ambient temperature, exert a considerable negative influence on PV modules, with cell efficiencies decreasing as the cell’s operating temperature increases. Higher PV module surface temperatures mean lower output voltages and subsequent lower output power. Therefore, this dissertation focuses on optimizing the available output power from a PV module by investigating and controlling the effect that the PV module’s surface temperature exerts on the amount of electrical energy produced. A pilot study was conducted by using a PV module set to three different tilt angles with an orientation angle and temperature sensors placed at different points. This was done to determine temperature distribution on the PV module surfaces as well as identify which tilt angle produces the highest PV module surface temperature. The main study was designed to investigate the electrical performance of a PV module with different cooling systems (water and forced air) as against a referenced measurement (no cooling). The cooling systems will be switched on and off at specific time intervals with the help of an electronic timer circuit incorporating a PIC microcontroller. The pilot study was conducted for a 50 week period where the results indicated a direct correlation between temperature rise and voltage decrease. The PV module’s temperature is highest at a tilt angle of 16° during the day and lowest at night time. It further reveals that the PV module’s front and back surface temperature can be distinctly different, with the highest recorded values occurring at the back of the PV module. The main study was conducted for a period of 15 weeks with results indicating that the water cooling system resulted in an average higher output power of 49.6% when compared to the reference system (no cooling system). Recommendations are made that sufficient space should be included between the module frames and mounting structure to reduce high operating temperatures owing to poor air circulation.
6

Robot řízený mikroprocesorovou jednotkou PIC / Robot Controlled by PIC Microprocessor Unit

Heřman, Petr January 2015 (has links)
This thesis describes design of a cheap robot. It includes implementation of firmware of low level control unit based on microcontroller PIC. The firmware drives motors, gains sensors data and communicates with the high level control unit. Furthermore the thesis presents realisation of connection to the robotic operation system ROS and its standard structures allowing usage of existing packages for the robot teleoperation and displaying sensor data on the remote computer. The thesis finally reports experiments with the robot. The constructed prototype is the model of the robotic lawn mower, however the whole solution has universal usage.

Page generated in 0.0685 seconds