• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel materials from lignocellulosic sources- can they replace thermoplastics? / Nya material med lignocellulosa som bas- kan de ersätta termoplaster?

Albinsson, Emmy, Tafesse Belachew, Helina, Swaich, Jasmin, Juhlin, Hannah January 2021 (has links)
Plastic waste is a severe environmental problem in today's society which has been noticed and discussed during the last couple of years. A constant increase of production over the last decades hasled to a large amount of plastic waste ending up in oceans as microplastics. With harder restrictions of plastic use from the European Parliament, alternative plastics that are bio-based and therefore degradable have increased in demand. The aim of this project was therefore to synthesize alignocellulose-based material which contains the minimum amount of latex, the plastic component, while still satisfying the same requirements as a thermoplastic. The original idea was to create the latex with PISA-RAFT technique however, this was not possible since the needed materials could not be delivered due to COVID-19, therefore radical emulsion polymerization was carried out. Two latexes were synthesized to create composites with wheat-straw, latex A and latex B. Both latexes consisted of 75% of monomer vinyl acetate (VAc) which was the main component but with different weight percentages of monomers methacrylic acid (MAA) and methyl methacrylate (MMA). Latex A consisted of 20 % MAA and 5% MMA and latex B consisted of 20% MMA and 5% MAA. Latex A and latex B were then mixed with wheat straw to create composites. Due to problems withthe wheat-straw composites one additional composite was created to be able to do all of the analyses. This composite was created by using filter paper as biofiber to mix with the two different latexes. Various characterization analyses including FE-SEM, DLS, DSC, FTIR, NMR, TGA and tensile tests were performed on the composites. The NMR and DSC analyses indicated that the actual composition of monomers differs from the theoretical composition and demonstrates that the presence of MAA is hard to detect. This is due to the DSC value for latex A experimental Tg being lower than latex B experimental Tg when latex A consists of more MAA which has a higher detected Tg. During the NMR analysis MAA was also not detected in either latex A nor latex B. The analyses of FTIR contradicts the NMR and DSC analyses hence peaks believed to be from MAA are detected. When comparing the analysis for latex A and B, DLS analysis resulted in latex A having a low PDI and a bigger emulsion sphere size which is preferred when producing composites. The tensile test resulted in latex B achieving the higher values for Young’s modulus and max stress while latex A had a higher value for strain at break. The TGA and DSC analysis however resulted in latex B having a higher Tg and higher thermal stability. The overall analyses indicated that latex B was the most optimal choice for composite production with aslight difference. The analysis of the composites indicated by FE-SEM that the interaction between latex and filter paper were higher than for latex and wheat straw. A total of four wheat-straw composites were created with the weight-ratio of wheat-straw:latex, 50:50 and 75:50 for both latex A and B. Due to not being able to grind the wheat straw to the minimum size needed to create composites only FE-SEM and FTIR analyses of the wheat-straw composites could be made. Because of this no conclusion could be made whether the 75:50 or 50:50 weight ratio was the most optimal. / Plastavfall är ett allvarligt miljöproblem i dagens samhälle som uppmärksammats mycket under de senaste åren. En ständig ökning i produktionen under de senaste decennier har lett till att stora mängder plast hamnat i haven där de sönderdelas till mikroplaster. Med strängare krav av plastanvändning från Europaparlamentet har nya alternativa plaster som är biobaserade och därmed nedbrytbara ökat i efterfråga. Målet med detta projekt var därför att syntetisera ett lignocellulosabaserat material som innehåller så lite icke-nedbrytbar latex, plastkomponenten, som möjligt utan att behöva mista de egenskaper som efterfrågas av termoplaster idag. Den ursprungliga idén var att syntetisera latexen genom PISA-RAFT tekniken, dessvärre pga rådande omständigheter gällande COVID-19 var detta inte möjligt då materialen som behövdes inte kunde levereras. Därför syntetiserades latexen genom emulsionspolymerisation istället. På grund av problem med halmen skapades två olika typer av kompositer, halm kompositer och filterpapper kompositer. De två kompositerna gjordes i två varianter, en innehållande latex A och en med latex B. Latex A och B syntetiserades av olika mängd monomerer vilka var metakrylsyra (MAA) och metylmetakrylat (MMA). Både latex A och B innehöll 75 % av monomeren vinylacetat (VAc). Olika karakteriseringsmetoder, FE-SEM, DLS, DSC, FTIR, NMR, TGA och tensile test utfördes på kompositerna. NMR och DSC analyserna indikerade att den analyserade kompositionen av monomererna skiljer sig åt från den teoretiska kompositionen då närvaron av MAA var svår att detektera. FTIR analysen motsäger dock de analyserade värdena av NMR och DSC då MAA tros ha detekteras då. För jämförelsen av latex A och B resulterade DLS i lägre PDI och större emulsions sfärer för latex A vilket föredras vid produktion av kompositer. Genom analys av tensile test uppnådde latex B högre värden för Young`s modul och max stress medans latex A uppnådde högre värden för belastning vid brottet. TGA och DSC analysen resulterade dock i högre Tg och högre termisk stabilitet för latex B. Den övergripande analysen indikerade att latex B var det mer optimala valet för kompositproduktion meden liten skillnad i jämförelse. Analysen av kompositerna genom FE-SEM indikerade att interaktionen mellan latex och filterpapper var högre än latex och halmen. Total skapades fyra halm kompositer med halm:latex viktförhållandet 50:50 och 75:50 för både latex A och B. Till följd av att halmen inte kunde malas ned till den minimala storleken som behövdes för att bilda kompositer, kunde endast FE-SEM och FTIR analyser utföras. På grund av detta kunde ingen slutsats dras om vilket viktförhållande, 50:50 eller 75:50, som bildade den mest optimala kompositen.

Page generated in 0.0251 seconds