• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermofluidic Transport in Evaporating Droplets: Measurement and Application

Aditya Chandramohan (6635972) 14 May 2019 (has links)
<p>Microscale environments provide significant resolution and distortion challenges with respect to measurement techniques; however, with improvements to existing techniques, it is possible to gather relevant data to better understand the thermal and fluidic mechanisms at such small scales in evaporating droplets.</p> <p> </p> <p>Infrared thermography provides several unique challenges at small scales. A primary issue is that the low native resolution of traditional infrared cameras significantly hamper the collection of details of microscale features. Furthermore, surfaces exhibiting vastly different emissivities, results in inaccurate temperature measurements that can only be corrected with irradiance-based emissivity maps of the surface; however, due to the resolution limitations of infrared thermography, these emissivity maps can also display significant errors. These issues are overcome through the use of multi-frame super-resolution. The enhanced resolution allows for better capture of microscale features, therefore, enhancing the emissivity map. A quantitative error analysis of the system is conducted to quantify the feature size resolution improvement as well as the smoothing effect of super-resolution reconstruction. Furthermore, a sensitivity analysis is conducted to quantify the impact of registration uncertainty on the accuracy of the reconstruction. Finally, the improved emissivity map from super-resolution is demonstrated to show the increased accuracy over low-resolution mapping.</p> <p> </p> <p>When applied to water droplets, particularly on nonwetting surfaces, infrared thermography is confounded by the presence of nonuniform reflectivities due to the spherical curvature of the liquid-air interface. Thus, when measuring the temperature along the vertical axis of a water droplet, it is necessary to correct the reflection. Using a controlled background environment, in conjunction with the Fresnel equations, it is possible to correct the reflective effects on the interface and calculate the actual temperature profile. This allows for a better understanding of the governing mechanisms that determine the thermal transport within the droplet. While thermal conduction is the primary transport mechanism along the vertical axis of the droplet, it is determined that the temperature drop is partially dampened by the convective transport from the ambient air to the liquid interface. From this understanding revealed by the measurements, the vapor-diffusion-based model for evaporation was enhanced to better predict evaporation rates.</p> <p> </p> <p>Further exploration into the mechanisms behind droplet evaporation on nonwetting surfaces requires accurate knowledge of the internal flow behavior. In addition, the influence of the working fluid can have a significant impact on the governing mechanisms driving the flow and the magnitude of the flowrate. While water droplet evaporation has been shown to be governed by buoyancy-driven convection on nonwetting substrates, similar studies on organic liquid droplets are lacking. Particle image velocimetry is effective at generating a velocity flow field, but droplets introduce distortion due to the refraction from the spherical interface of the droplet. As such, velocity correction using a ray-tracing approach was conducted to correct the velocity magnitudes and direction. With the velocity measurements, the flow was determined to be surface-tension-driven and showed speeds that are an order of magnitude higher than those seen in buoyancy-driven flow in water droplets. This resulted in the discovery that advection plays a significant role in the transport within the droplet. As such, the vapor-diffusion-governed evaporation model was adjusted to show a dramatic improvement at predicting the temperature gradient along the vertical axis of the droplet.</p> <p> </p> <p>Armed with the knowledge of flow behavior inside droplets, it is expected that droplets with aqueous solutions should exhibit buoyancy-driven convection. The final part of this work, therefore, leverages this phenomenon to enhance mixing during reactions. Colorimetry is a technique that is widely utilized to measure the concentration of a desired sample within some liquid; the sample reacts with a reagent dye the color change is measured, usually through absorbance measurements. In particular, the Bradford assay is used to measure protein concentration by reacting the protein to a Coomassie<sup>TM</sup> Brilliant Blue G-250. The absorbance of the dye increases, most significantly at the 590 nm wavelength, allowing for precise quantitation of the amount of protein in the solution. A droplet-based reaction chamber with buoyancy-enhanced mixing has the potential to speed up the measurement process by removing the need for a separate pre-mixing step. Furthermore, the reduced volume makes the process more efficient in terms of reactant usage. Experimental results of premixed solutions of protein sample and reagent dye show that the absorbance measurement through a droplet tracks strongly with the protein concentration. When the protein sample and dye reagent are mixed <i>in situ</i>, the complex interaction between the reactants, the mixing, and the adsorption of protein onto the substrate creates a unique temporal evolution in the measured absorbance of the droplet. The characteristic peaks and valleys of this evolution track strongly with concentration and provide the framework for measurement of concentration in a droplet-based system.</p> <p> </p> <p>This thesis extends knowledge about droplet thermal and fluidic behavior through enhanced measurement techniques. This knowledge is then leveraged in a novel application to create a simple, buoyancy-driven colorimetric reaction setup. Overall, this study contributes to the field of miniaturized, efficient reaction and measurement devices.</p>
2

Experimental investigation of thermal and fluid dynamical behavior of flows in open-ended channels : Application to Building Integrated Photovoltaic (BiPV) Systems

Sanvicente, Estibaliz 03 July 2013 (has links) (PDF)
Among technologies capable to produce electricity locally without contributing to GHG releases, building integrated PV systems (BIPV) could be major contributor. However, when exposed to intense solar radiation, the temperature of PV modules increase significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decrease the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. An experimental investigation of heat transfer and fluid flow characteristics of natural convection of air in vertical and inclined open-ended heated channels is therefore undertaken so as provide reliable information for the design of BIPV. Two experimental set ups were developed and used during the present investigations; one located at the CETHIL laboratory in Lyon, the F-device and the other located at the University of New South Wales in Sydney, the R-device. Both channels consisted of two wide parallel plates each of which could be subjected to controlled uniform or non-uniform heat fluxes. The investigation has been conducted by analyzing the mean wall temperatures, measured by thermocouples and mean velocity profiles and turbulent quantity distributions of the flow, measured with a PIV system. Flow patterns close to the heated faces were also investigated. The study is particularly focused on the transition region from laminar to turbulent flow. Three different heating geometric arrangements are examined in the modified Rayleigh number range from 3.86 x 105 to 6.22 x 106. The first is a vertical channel with one wall uniformly heated while the other was unheated, the second was a vertical channel in which both walls were non-uniformly heated and the third is an inclined channel uniformly heated from above. In the vertical configurations the width-to-height channel aspect ratio was fixed at 1:15 and in the inclined ones at 1:16. It is shown that the flow is very sensitivity to disturbances emanating from the ambient conditions. Moreover, the propagation of vortical structures and unsteadiness in the flow channel which are necessary to enhance heat transfer, occurred downstream of the mid-channel section at Ra* = 3.5 x 106 for uniformly and asymmetrically heated channels inclined between 60° and 90° to the horizontal. Indeed, these unsteady flow phenomena appears upstream the location of the inflexion point observed in the temperature excess distribution of the heated wall. In the case of non-uniform heating on both sides of the channel, a stronger 'disruption mechanism' exists, which leads to enhanced mixing and increased Reynolds stresses over most of the width of the channel. Empirical correlations of average Nusselt number as a function of modified Rayleigh number were obtained for each configuration.
3

Experimental investigation of thermal and fluid dynamical behavior of flows in open-ended channels : Application to Building Integrated Photovoltaic (BiPV) Systems / Etude expérimentale du comportement dynamique thermique et fluide des flux dans les canaux ouverts : Application à la création de systèmes photovoltaïques intégrés au bâti (BIPV)

Sanvicente, Estibaliz 03 July 2013 (has links)
Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BiPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants, influence sensiblement leur efficacité ainsi que leur durée de vie. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. La configuration privilégiée est une configuration d’intégration au sein d’une enveloppe ventilée qualifiée de double-peau photovoltaïque. La présente étude expérimentale porte sur les transferts de chaleur et les caractéristiques de l’écoulement en convection naturelle dans des canaux chauffés verticaux ou inclinés. Deux bancs d’essais existants ont été complétés afin d’obtenir des données. Ils sont composés de deux plaques planes parallèles séparées par une lame d’air. Les parois sont soumises à des conditions aux limites de type densité de flux imposée. Les températures moyennes à la paroi ont été mesurées par thermocouples. Un système de vélocimétrie par image de particules a permis d’obtenir des profils de vitesse moyenne ainsi que les distributions d’intensité turbulente dans l’écoulement. Les champs de vitesse instantanée ont également été examinés. Trois configurations ont été étudiées avec un nombre de Rayleigh variant entre 3,86 x 105 et 6,22 x 106. La première est un canal vertical avec une des deux parois chauffée uniformément. La seconde est un canal vertical dans lequel les deux parois sont chauffées de façon non-uniforme et alternée. La troisième est de type canal incliné chauffé uniformément sur la paroi supérieure. Le rapport de forme du canal (largeur/hauteur) est de 1/15 pour le deux premières configurations et de 1/16 pour la troisième. Une attention particulière a été portée sur l’identification de la zone de transition laminaire-turbulent. L’étude a permis de mettre en évidence la sensibilité de l’écoulement aux perturbations extérieures. Pour un chauffage uniforme et asymétrique, à partir d’un nombre de Rayleigh Ra* de 3.5 x 106 et pour θ = 60° et 90°, il a été constaté que la propagation de structures cohérentes dans le canal a lieu à partir de la mi-hauteur de ce canal. Ces instabilités favorisent alors les transferts thermiques. Dans le cas d’un chauffage non-uniforme sur les deux parois du canal, l’écoulement est fortement perturbé ce qui conduit à l’augmentation du brassage et de la contrainte de Reynolds sur la majorité de la largeur du canal. Enfin, pour chacune des configurations, des corrélations permettant de quantifier les transferts de chaleur à la paroi et au sein de la lame d’air (nombre de Nusselt moyen en fonction du nombre de Rayleigh) ont été établies. / Among technologies capable to produce electricity locally without contributing to GHG releases, building integrated PV systems (BIPV) could be major contributor. However, when exposed to intense solar radiation, the temperature of PV modules increase significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decrease the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. An experimental investigation of heat transfer and fluid flow characteristics of natural convection of air in vertical and inclined open-ended heated channels is therefore undertaken so as provide reliable information for the design of BIPV. Two experimental set ups were developed and used during the present investigations; one located at the CETHIL laboratory in Lyon, the F-device and the other located at the University of New South Wales in Sydney, the R-device. Both channels consisted of two wide parallel plates each of which could be subjected to controlled uniform or non-uniform heat fluxes. The investigation has been conducted by analyzing the mean wall temperatures, measured by thermocouples and mean velocity profiles and turbulent quantity distributions of the flow, measured with a PIV system. Flow patterns close to the heated faces were also investigated. The study is particularly focused on the transition region from laminar to turbulent flow. Three different heating geometric arrangements are examined in the modified Rayleigh number range from 3.86 x 105 to 6.22 x 106. The first is a vertical channel with one wall uniformly heated while the other was unheated, the second was a vertical channel in which both walls were non-uniformly heated and the third is an inclined channel uniformly heated from above. In the vertical configurations the width-to-height channel aspect ratio was fixed at 1:15 and in the inclined ones at 1:16. It is shown that the flow is very sensitivity to disturbances emanating from the ambient conditions. Moreover, the propagation of vortical structures and unsteadiness in the flow channel which are necessary to enhance heat transfer, occurred downstream of the mid-channel section at Ra* = 3.5 x 106 for uniformly and asymmetrically heated channels inclined between 60° and 90° to the horizontal. Indeed, these unsteady flow phenomena appears upstream the location of the inflexion point observed in the temperature excess distribution of the heated wall. In the case of non-uniform heating on both sides of the channel, a stronger ‘disruption mechanism’ exists, which leads to enhanced mixing and increased Reynolds stresses over most of the width of the channel. Empirical correlations of average Nusselt number as a function of modified Rayleigh number were obtained for each configuration.
4

Ecoulements gaz-liquide et comportement des bulles en microcanaux / Study of gas-liquid two-phase flows and bubble behaviors in microchannels

Fu, Taotao 24 June 2010 (has links)
Les écoulements gaz-liquide constituent un axe de recherche très actif en microfluidique. Le rapport des débits entre les deux phases, la formation de bulles et les champs de vitesse des microcanaux ont été étudiés dans cette thèse, en utilisant une caméra numérique rapide et un microsystème de Particule Image Velocimetry (micro-PIV). En particulier, le diagramme des phases gaz-liquide ont été établi dans des microcanaux carrés ; la formation des bulles en fluides tant newtoniens que non newtoniens a été étudiée en détail dans plusieurs configurations géométriques telles que T-injonction et flow-focusing. Les mécanismes régissant la formation d'une bulle ont été modélisés pour chaque étape : expansion, amincissement et rupture. L'étape amincissement de la traînée d'une bulle est notamment contrôlée par une pression orthogonale qui dépend du débit du liquide. Dans le cadre de flow-focusing, le mécanisme de la rupture du film gazeux peut être décrit par une loi d'échelle reliant l'épaisseur minimale du film au temps restant juste avant la rupture avec un exposant 1/3. Le caractère non newtonien de fluides PAAm allonge la traînée d'une bulle par rapport aux fluides newtoniens. Enfin, l'étude de la coalescence entre bulles a été entreprise à l'échelle microscopique ainsi que le comportement complexe des trains de bulles dans des réseaux de microcannaux / Gas-liquid two-phase flow is an important research project in microfluidics. The gas-liquid two-phase flow, the bubble formation and moving behaviours in microchannels were investigated, by using a high speed digital camera and a micro Particle Image Velocimetry (micro-PIV). The gas-liquid two-phase flow in vertical rectangular microchannels was investigated and a flow pattern map was constructed; the bubble formation in both Newtonian and non-Newtonian fluids in cross-flowing microfluidic T-junctions and flow-focusing devices was investigated; the bubble formation process could be divided into expansion, collapse and pinch-off stages; the collapse speed of the gaseous thread in the second stage is controlled by the squeezing pressure, and is proportional to the liquid flow rates; while the minimum width of the neck of the gaseous thread in the third stage for bubble formation in flow-focusing devices could be scaled with the remaining time to the ultimate pinch-off as a power law relationship with an exponent of 1/3; the PAAm solutions prolong the gaseous thread in the tangential direction of the neck; bubble coalescence in a microchannel with an expansion section was studied; the bubble behavior in a microchannel with a loop was also investigated
5

Étude expérimentale des couplages entre la dynamique d’un jet qui heurte une plaque fendue et l’émission sonore générée / Experimental study of coupling between the dynamics of a jet impinging a slotted plate and the noise generated

Assoum, Hassan 11 December 2013 (has links)
Un jet heurtant une plaque fendue peut générer, dans certaines configurations, des nuisances sonores. En effet, l’interaction de l’écoulement et de l’obstacle au niveau de la fente, sous certaines conditions, donne naissance à une perturbation remontant l’écoulement et pouvant contrôler son détachement à sa naissance. La perturbation produite par cette boucle de rétroaction optimise le transfert d’énergie du champ aérodynamique du jet vers le champ acoustique rayonné. Afin d’appréhender la dynamique tourbillonnaire, d’analyser les couplages entre cette dernière et les émissions sonores générées et de mieux comprendre les phénomènes responsables de ces nuisances, un dispositif expérimental basé sur de la métrologie laser a été réalisé. Ce système permet, d’une part, la génération de l’écoulement et la maitrise de ses paramètres (confinement, vitesse, forme,…) et d’autre part, la réalisation de plans lasers et de mesures par imagerie de particules (PIV). Ainsi le travail présenté dans ce manuscrit concerne les couplages qui existent entre la dynamique de l’écoulement heurtant une plaque fendue et les champs acoustiques générés. Les mesures de champs cinématiques d’un jet plan heurtant une plaque fendue par Vélocimétrie par Images de Particules (PIV) sont réalisées simultanément avec des mesures de champs acoustiques. Après avoir caractérisé les écoulements étudiés, on présente par des graphes spatio-temporels, les corrélations entre les signaux acoustiques et les vitesses de l’écoulement depuis la sortie du jet jusqu’à son arrivée à la plaque fendue. Ces corrélations sont calculées de deux manières : à partir de signaux bruts dans un premier temps, puis, dans un second temps, avec une méthode de pré-blanchiment (terme anglo-saxon : ‘’pre-whitening’’). Cette méthode vise à mettre en exergue l’existence d’une instabilité globale du jet qui existe dans les signaux analysés. Cette instabilité est importante pour la boucle de rétroaction des sons auto-entretenus, mais quasiment masquée devant les phénomènes principaux dominants (tourbillons primaires) dans le calcul des inter-corrélations. / Self-sustaining sounds related to aero-acoustic coupling occurs in impinging jets when a feedback loop is present between the jet exit and a slotted plate: the downstream-convected coherent structures and upstream-propagating pressure waves generated by the impingement of the coherent structures on the plate are phase locked at the nozzle exit. The upstream-propagating waves excite the thin shear layer near the nozzle lip and result in periodic coherent structures. The period is determined by the convection speed of the coherent structures and the distance between the nozzle and the plate. Simultaneous measurements of the velocity fields and the acoustic waves in a plane jet impinging a slotted plate were performed using time-resolved particle image velocimetry (PIV) and a microphone. A better understanding of the flow physics and the aero-acoustic coupling are obtained thanks to spatio-temporal cross-correlations between the transverse velocity and the acoustic signals. Cross-correlations are calculated using two different methods: classical analysis of the original signals and by developing a pre-whitening technique. The latter method is useful for analyzing small random signals superimposed on a high amplitude pure tone.
6

Étude expérimentale et numérique des grilles ichtyocompatibles / Experimental and numerical study of fish-friendly trashracks

Raynal, Sylvain 03 December 2013 (has links)
Un des enjeux de la Directive Cadre sur l'Eau (2000) est de rétablir la migration piscicole aval à travers notamment une baisse de la mortalité des poissons au niveau des turbines des centrales hydroélectriques. Les grilles ichtyocompatibles constituent une des solutions possibles grâce à un arrêt physique des poissons couplé à un guidage vers un exutoire de contournement. Dans ce contexte, nous avons mené une étude expérimentale et numérique afin de caractériser différents types de grilles en termes de pertes de charge et de courantologie. Cela a permis de déterminer d'une part les pertes d'énergie liées à la proximité des barreaux pour diverses configurations et d'autre part les vitesses que les poissons sont susceptibles de rencontrer le long des grilles jusqu'à l'exutoire. Ces deux sujets complémentaires ont été abordés via l'utilisation de deux installations hydrauliques couplées à plusieurs systèmes de mesure adaptés à nos modèles de grille. Des mesures de hauteur d'eau ont permis d'établir des nouvelles lois de pertes de charge tandis que des mesures de vitesse avec des systèmes de vélocimétrie acoustique par effet Doppler (ADV) et de vélocimétrie par images de particules (PIV) ont permis de déterminer les angles pour lesquels les grilles satisfont les critères d'ichtyocompatibilité. Certains points de l'étude, liés à la caractérisation des exutoires notamment, ont été résolus grâce à des simulations numériques avec le logiciel OpenFOAM. L'ensemble des résultats obtenus a permis de dimensionner et de comparer les différentes solutions de grilles dans un cas de prise d'eau réel, soulignant ainsi les avantages et problématiques inhérents à chacune des solutions. / The Water Framework Directive (2000) particularly aimed at restoring the fish downstream migration and at preventing fish from being injured or killed in hydropower plant turbines. Fish-friendly trashracks, which physically stop fish and guide them towards bypasses, are one of the possible solutions.In this context, we have carried out an experimental and numerical study focused on the characterization of head losses and velocity distributions for various kinds of trashrack. This helped to quantify the energy loss due to the narrow bar spacing and to assess the magnitude of velocities that fish may face in different trashrack configurations. Two hydraulic installations coupled with several measurement devices allowed the study of both topics on model trashracks. Water depth measurements resulted in new head loss equations while velocity measurements with acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) systems allowed the determination of fish-friendly angles in different trashrack configurations. Some other points of the thesis, concerning for instance bypasses, have been investigated with numerical simulations using OpenFOAM software. All the results allowed the conception and the comparison of various trashrack solutions for a real water intake case, highlighting the advantages and drawbacks relative to each of these solutions.
7

Phase Locked Flow Measurements of Steady and Unsteady Vortex Generator Jets in a Separating Boundary Layer

Hansen, Laura C. 18 March 2005 (has links) (PDF)
Vortex generator jets (VGJs) have been found to be an effective method of active separation control on the suction side of a low pressure turbine (LPT) blade at low Reynolds numbers. The flow mechanisms responsible for this control were studied and documented in order to provide a basis for future improvements in LPT design. Data were collected using a stereo PIV system that enabled all three components of velocity to be measured. Steady VGJs were injected into a laminar boundary layer on a flat plate (non-separating boundary layer) in order to more fully understand the characteristics and behavior of the produced vortices. Both normal (injected normal to the wall) and angled (injected at 30° pitch and 90° skew angles to the freestream) jets were studied. The steady jets were found to create vortices that swept the low momentum fluid up from the boundary layer while transporting high momentum freestream fluid towards the wall, a phenomenon that provides the ingredients for flow control. Pulsed VGJs were then injected on a flat plate with an applied adverse pressure gradient equivalent to that experienced by a commonly tested LPT blade. This configuration was used to study the effectiveness of the flow control exhibited by both normal and angled jets on a separating boundary layer. Time averaged results showed similar boundary layer separation reduction for both normal and angled jets; however, individual characteristics suggested that the control mechanism of the two injection angles is distinct. Steady and pulsed VGJs were then applied to a new aggressive LPT blade design to explore the effect of the jets on a separating boundary layer along the curved blade surface. Steady injection provided flow control through freestream entrainment, while pulsed jets created a two-dimensional, spanwise disturbance that reduced the separated area as it traveled downstream. A detailed fluid analysis of the uncontrolled flow around the blade was performed in order to identify the separation and reattachment points and the area of transition. This information was used as a basis for comparison with the VGJ cases to determine flow control effectiveness.

Page generated in 0.0819 seconds