• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 40
  • 20
  • 16
  • 15
  • 12
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 395
  • 94
  • 61
  • 43
  • 42
  • 41
  • 37
  • 31
  • 31
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Tracing the CO “ice line'' in an MRI-active protoplanetary disk with rare CO isotopologues

Yu, Mo, active 2013 03 December 2013 (has links)
The properties of planet-forming midplanes of protostellar disks remain largely unprobed by observations due to the high optical depth of common molecular lines and continuum. However, rotational emission lines from rare isotopologues may have optical depth near unity in the vertical direction, so that the lines are strong enough to be detected, yet remain transparent enough to trace the disk midplane. In this thesis, we present a chemical model of an MRI-active protoplanetary disk including different C, O isotopes and detailed photochemical reactions. The CO condensation front is found to be at 1.5 AU on the disk midplane around a solar like star, and its location remains almost unchanged during 3Myr of evolution. The optical depth of low-order rotational lines of C¹⁷O are around unity, which suggests it may be possible to see into the disk midplane using C¹⁷O. Such ALMA observations would provide estimates of the disk midplane temperature if the CO ice lines were spatially or spectrally resolved. With our computed C¹⁷O/H₂ abundance ratio, one would also be able to measure the disk masses by measuring the intensity of gas emission. / text
122

The anisotropic seismic structure of the Earth's mantle : investigations using full waveform inversion

Matzel, Eric M. 28 August 2008 (has links)
I have developed a waveform inversion procedure to invert 3 component broadband seismic data for models of the anisotropic seismic structure of the Earth and applied the technique to an investigation of wave propagation through anisotropic media and earthquake data sampling the upper mantle beneath the East European platform. The procedure combines the conjugate-gradient and very fast simulated annealing methods and attempts to minimize a cross-correlation misfit function comparing data to synthetic seismograms. A series of inversion passes are performed over a range of frequency and time windows to progressively focus in on structural details. The intent is to obtain P and S velocity models that simultaneously match all components of the data (radial, vertical and tangential). The variables in the problem are the seismic velocities ([alpha] and [beta]) as a function of depth. When radial anisotropy is required this set is expanded to include the five variables that determine the seismic velocities in a radially anisotropic medium ([alpha subscript h, alpha subscript v, beta subscript h, beta subscript v, eta]). I investigate the propagation of seismic waves through radially anisotropic media, evaluate which elements of radial anisotropy are best resolved by seismic data and discuss strategies for identifying radial anisotropy in the Earth. S anisotropy, [beta]%, and the horizontal component of P velocity, [alpha subscript h], are typically well resolved by multicomponent seismic data. P anisotropy, [alpha]%, and [eta] are often poorly resolved and trade off with one another in terms of their effect on S[subscript V] arrivals. Erroneous structure will be mapped into models if anisotropy is neglected. The size of the erroneous structure will be proportional to the magnitude of anisotropy present and extend well below the anisotropic zone. The effects of anisotropy on P models produced with an isotropic assumption are most similar to the effects on isotropic S[subscript H] models. When comparing isotropic models, [alpha/beta subscript sh] is therefore often a better measure than [alpha/beta subscript sv] for characterizing mantle petrology. Isotropic S[subscript H], S[subscript V] and P models developed separately using the same data set can provide a good initial estimate of the presence, location and magnitude of anisotropy and those results can be used to create an initial model for an anisotropic inversion solving simultaneously for all 3 components of the data. Finally, I present models for the P and S velocity structure of the upper mantle beneath the East European platform including an analysis of radial anisotropy. The data are 3-component broadband seismograms from strike-slip earthquakes located near the edge of the platform and recorded in Russia and Europe. The timing, amplitude and interference characteristics of direct arrivals (S, P), multiply reflected arrivals (SS, PP), converted phases and surface waves provide very good radial resolution throughout the upper 400 km of the mantle. The platform is underlain by a radially anisotropic seismic mantle lid extending to a depth of 200 km with a largely isotropic mantle below. The model has a positive velocity gradient from 41 km to 100 km depth, and a relatively uniform velocity structure from 100 km to 200 km depth with high S[subscript H] and P[subscript H] velocities (4.77 km /s, 8.45 km/s). Shear anisotropy is uniform at 5% ([beta subscript H] > [beta subscript V]) from 41 to 200 km depth, drops to 2% from 200 to 250 km and is isotropic below that. The average shear velocity from 100 to 250 km is also uniform at 4.65 km/s and the drop in anisotropy is matched by a drop in [beta subscript H] to 4.70 km/s combined with an increase in [beta subscript V] to 4.60 km/s. Below 250 km there is a positive velocity gradient in both P and S velocity down to 410 km. P anisotropy is not well resolved, but P structure mimics the S[subscript H] velocity structure, suggesting that P is also anisotropic within the lid. / text
123

VOLCANO-ICE INTERACTIONS ON THE EARTH AND MARS

Allen, Carlton January 1979 (has links)
No description available.
124

LIGHT SCATTERING FROM AMMONIA AND WATER CRYSTALS

Holmes, Alan Wright, 1950- January 1981 (has links)
Researchers analyzing the upper clouds of Jupiter and Saturn are unable to theoretically reproduce the data returned by Pioneers 10 and 11 and Voyagers 1 and 2 with an approach based on Mie theory. Ammonia crystals are believed to be an important constituent of Jupiter's upper clouds, but both their shape and scattering properties were unknown at the start of this work. Ammonia crystals and water crystals were grown in a cold chamber at temperatures 20°C below their freezing points (0°C and -77.7°C, respectively). The H₂O crystals formed had shapes in agreement with published growth habit diagrams. The NH₃ crystals formed were usually irregular in shape, but regular four-sided pyramids were commonly observed. This four-sided pyramidal shape is in agreement with ammonia's primitive cubic crystal structure. Ammonia crystals could not be formed at temperatures above -95°C due to nucleation problems. A scattering measuring instrument was constructed with fifteen separate lens-detector combinations aimed at a common point in the center of the cold chamber. A laser beam (6328Å wavelength) traversed the chamber center, illuminating any crystal aerosal clouds present. A computer was used to rapidly sample the outputs of the fifteen detectors and to drive a photoelectric modulator to change the slow speed polarization properties of the laser beam. The measurements resulted in a determination of the single scattering phase function and degree of linear polarization for the crystal species present. Water crystals were found to have scattering properties similar to that reported by previous researchers. The H₂O crystal scattering possesses a smaller backscatter peak and smaller polarization features than is common for water spheres of similar size. A negative polarization of 5% occurred in the forward scattering hemisphere and a positive polarization of 10% in the rear. Ammonia particles were observed to have a backscattering peak four times higher than for water crystals. The NH₃ particle light scattering produced very little polarization of the scattered light. A small (∼ 4%) negative polarization occurred in the forward scattering hemisphere. Work is continuing here to make scattering measurements using blue light illumination nearly simultaneous with the red HeNe laser wavelength illumination.
125

STUDIES OF PLANETARY SPECTRA IN THE PHOTOGRAPHIC INFRARED

Owen, Tobias C. January 1965 (has links)
No description available.
126

The variations in the geometric albedo of Titan

Hutzell, William T. 08 1900 (has links)
No description available.
127

The Influence of Dust Devils on Martian Water Vapour Transport

Chen, Kuan-Chih Unknown Date
No description available.
128

Millimeter-wave spectra of the jovian planets

Joiner, Joanna 05 1900 (has links)
No description available.
129

Study and interpretation of the millimeter-wave spectrum of venus

Fahd, Antoine K. 08 1900 (has links)
No description available.
130

Properties of water ice clouds over major Martian volcanoes observed by MOC /

Benson, Jennifer L. January 2006 (has links)
Dissertation (Ph.D.)--University of Toledo, 2006. / Typescript. "Submitted as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics." Bibliography: leaves 103-113.

Page generated in 0.0176 seconds