161 |
Fabrication of High Performance Chip-to-Substrate InterconnectionsHe, Ate 06 April 2007 (has links)
Novel fabrication technologies for high performance electrical and optical chip-to-substrate input/output (I/O) interconnections were developed. This research is driven by the long term performance and integration requirements of high performance chip-to-substrate I/Os, as well as the package reliability demands from semiconductor manufacturing. An electroless copper plating and annealing process was developed to join copper structures to achieve chip-to-substrate assembly by all copper pillar interconnects. The developed copper pillar interconnects provide much higher current carrying capability for chip-to-substrate power/ground input/output distributions and have low electrical parasitic characteristics for high frequency electrical signal communications. This copper bonding process also demonstrates the capability to compensate for misalignments and height variations of bonded structures. A finite element generalized plane deformation model was employed to design fully compliant copper pillars to eliminate the need of underfill. Electrical parasitics of copper pillar chip-to-substrate interconnects were studied by the derived formulas for low parasitic requirements. An optimized dimension space for all the criteria was provided on the pillar dimension chart. A novel nanoimprint lithography was developed to combine with photolithography in one process to create high quality features on a macrostructure for chip-to-substrate optical I/O applications. This fabrication process also demonstrated the capability to produce off-angle complex structures.
|
162 |
Studies on the Grinding Characteristics of Diamond Film by Using the Composite Electroplating on Grinder in ProcessChen, Tai-Jia 25 July 2005 (has links)
In the study, the effect of current density and rotation speed of grinding disk on characters of Ni-Diamond composite coating are investigated. Experimental results show that current density and film thickness are almost linearly depend. When the current density is increased, the film thickness is increased, too. And it can cover diamond particles much more efficiently. The rotation speed of grinding disk is 20 rpm, the average deposition rate is approx. 2£gm/min in 5 ASD. When reduce the current density to 2.5ASD, the average deposition rate reduce to approx. 1.08£gm/min. The current density is 5 ASD, the covered area of diamond particle in Ni-Diamond composite coating is 60% when the rotation speed of grinding disk is 0rpm. Increasing the rotation speed up to 100 rpm, the covered area of diamond particle in Ni-Diamond composite coating is down to 24% because diamond particle can`t stay in the same position in a long period.
Secondary, we use composite electroplating on grinder in process to grind CVD diamond films, the effect of current density and loads on grinding characters of CVD diamond films by using the composite electroplating on grinder in process are investigated. The load is 4.2 kg, the surface roughness Ra is about 0.2 £gm when composite coating grind CVD diamond with no electroplating. But the current density is up to 2.5 ASD, Ra can down to 0.12£gm. The load is increasing to 6.3 kg, the Ra of CVD diamond films is about 0.16£gm.
|
163 |
Non-contact atomic force microscopy studies of amorphous solid water deposited on Au(111) /Donev, Jason Matthew Kaiser, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 135-138).
|
164 |
Electrochemical corrosion resistance of electroless plated mild steel.Osifuye, Onosetalese Christiana. January 2014 (has links)
M. Tech. Metallurgical Engineering / Mild steel is vulnerable to corrosion; this behaviour affects the material strength and electrochemical behaviour during industrial application. Mild steel also has poor tribological resistance; its application for the components of machines, however, requires good tribological property. The cost incurred from equipment failures, properties loss and increased production overheads makes is imperative to enhance mild steel's electrochemical and tribological properties. Electroless nickel plating has found extensive use in various industries attesting to its exceptional properties. The effect of bath parameters on the electroless plating process is of importance as this affects the adhesion, morphological behaviour, electrochemical properties and uniformity of coating. The key aim of this research is: To generally improve the understanding of the effect of electroless binary and ternary alloys on the corrosion and wear resistance of mild steel using weight loss method, potential measurement, linear polarization and tribological sliding wear tests. This work studies the effect of temperature, concentration, deposition time and the inclusion of Tin (Sn) as a third addition to the electroless bath. Corrosion and wear behaviour of the electroless plated mild steel was studied.
|
165 |
Design and operation of an advanced laser chemical vapor deposition system with on-line controlJean, Daniel Louis 08 1900 (has links)
No description available.
|
166 |
Process planning for laser chemical vapor depositionPark, Jae-hyoung 05 1900 (has links)
No description available.
|
167 |
Automation of CVI equipment for laminated matrix composite fabricationKing, Harry C., III 08 1900 (has links)
No description available.
|
168 |
Fabrication of a thin film resistance heaterSathya, Santhana. January 1999 (has links)
Thesis (M.S.)--Ohio University, August, 1999. / Title from PDF t.p.
|
169 |
Adhesion of sputtered copper to plasma-treated polyimide substances /Ma, Jong-Bong. January 1991 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1991. / Typescript. Includes bibliographical references.
|
170 |
Properties and characterisation of sputtered ZnO : a thesis presented for the degree of Doctor of Philosophy in Electrical and Computer Engineering at the University of Canterbury, Christchurch, New Zealand /Schuler, Leo P. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). "November 2008." Includes bibliographical references (p. [144]-149). Also available via the World Wide Web.
|
Page generated in 0.0136 seconds