• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 15
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 50
  • 20
  • 19
  • 17
  • 17
  • 16
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilitetsutredning av lerområde : Fallstudie av Mondi Dynäs fabriksområde i Väja, Kramfors

Eleholm, Simon, Russell, Michael January 2016 (has links)
No description available.
2

Modeling of pore pressure in a railway embankment

Vestman, Marcus January 2018 (has links)
LKAB and Trafikverket want to increase the maximum allowed axial load from 30 tons to 32,5 tons for the northern part of Malmbanan. There are ongoing investigations of the condition of the railway with the current axial load of 30 tons. The investigations do not include one of Trafikverket's concerns about the condition of the railway. That question is how the periodical load from trains affect the stability and maintenance cost of the railway embankment. The aim of this thesis is therefore to do a preliminary investigation of how the excess pore pressure is developed in the railway embankment during periodical loading and an attempt to model it the help of PLAXIS2D, a finite element software. PLAXIS2D has been used to model a simplified section of section km 1449+820 that is subjected by periodical loading with an axial load of 30 tons. There are 6 created models in the thesis where model 2-6 origin from model 1 but with some minor changes. The changes between the models are the train speed, groundwater level, width of the embankment and load. The periodical load applied in all models has been assumed to load the embankment with a periodical shape of a sinus curve. From the models, the distribution of the effective stress and excess pore pressure have been measured. The total displacement and the magnitude of excess pore pressure in different measuring points in the embankment have also been measured. These results have been used to analyze why there are certain points in the embankment which accumulate excess pore pressure. In the models, measuring points have also been created beneath the sleeper and in the embankment toe where total displacement and effective stress have been measured to relate and see if the response in stress and displacements are trustworthy. It was concluded that accumulation of excess pore pressure is relative high in the embankment toe due to the stress distribution and slope stability. The embankment is developing large shear stresses in the embankment toe to resist against slope failure. The excess pore pressure is recommended to be measured in the embankment toe, but it is also recommended to develop the model further since it does not consider any dynamics and neither soil stiffening or soil softening which limit the possibility to analyze liquefaction in detail.
3

Analysis and Modelling of Buried Pipe Deformations

Jiang, Chengxi 18 May 2021 (has links)
No description available.
4

Soil‐structure interaction for bridges with backwalls : FE‐analysis using PLAXIS

Carlstedt, Emelie January 2008 (has links)
Bro 2004, BV Bro and the Eurocodes give guidelines for how to consider earth pressure induced by change in temperature and braking forces when designing backwalls. In this thesis those demands are investigated using PLAXIS for evaluation of the earth pressure. The results show that the model in PLAXIS corresponds quite well with the conventions in Bro 2004 and that modelling in PLAXIS gives reliable results. The demand in Bro 2004 that backwalls always shall be designed for passive earth pressure has been found to be pessimistic. In case of long bridges and short backwalls passive earth pressure is most often reached but for shorter bridge lengths in combination with longer backwalls this is almost never the case. It was also found that PLAXIS is sensitive and that the structure of the model and the choice of input are essential. A model in PLAXIS doesn’t make the design more effective but it may be a good tool for analysing the effect of the earth pressure combined with other effects such as the patterns for displacement as well as moment- and force distributions. / Bro 2004, BV Bro och Eurocode ger råd för hur jordtryck som uppkommer på grund av temperaturändring och bromskraft skall tas hänsyn till vid dimensionering av ändskärmar. I detta examensarbete undersöks dessa dimensioneringskrav med hjälp av PLAXIS för att göra en bedömning av jordtrycket. Resultaten visar att modellen i PLAXIS överensstämmer ganska väl med de konventioner som ges i Bro 2004 och att PLAXIS ger tillförlitliga resultat. Kravet att ändskärmar alltid ska dimensioneras för passivt jordtryck visade sig vara pessimistiskt. I fall med långa broar och korta ändskärmar nås ofta passivt jordtryck men för kortare broar med djupare ändskärmar är detta nästan aldrig fallet. PLAXIS visade sig vara känsligt för hur modellen byggs upp och vilka indata som ändvänds, varför dessa bör väljas försiktigt. En modell i PLAXIS medför inte en mer effektiv dimensionering men kan vara ett bra verktyg för analys av jordtryck i kombination med andra effekter så som förskjutningsmönster samt moment- och kraftdiagram.
5

Modélisation physique et numérique de la mise en place des colonnes ballastées dans un sable fin

Hurley, Olivier January 2014 (has links)
L’amélioration des sols par la technique de vibrosubstitution est habituellement utilisée pour les sols cohésifs, mais peut toutefois être utilisée dans les sols pulvérulents avec potentiel de liquéfaction. Cette technique permet la création d’un réseau de colonnes ballastées (CB) qui réduit le tassement et augmente la capacité portante d’un sol. L'intérêt est certes bien affiché. En effet, Geopac Inc. (entreprise spécialisée) se propose d'évaluer sa méthode d'amélioration des sols par CB en vue de réduire (voire éliminer) le potentiel de liquéfaction des sols grenus. Geopac a fait recours à une collaboration avec l'UdeS pour analyser expérimentalement et numériquement l'influence de la mise en place des CB sur les propriétés d'un sol pulvérulent. Un programme expérimental a été élaboré dans le but d’étudier l’effet de la mise en place des CB sur le sol encaissant par cette technique. À cet effet, un modèle réduit unique a été conçu, instrumenté et calibré à l’UdeS pour permettre dans un premier temps, de simuler l’incorporation de pierre nette (ballast) dans un sol lâche non saturé tout en maintenant une contrainte verticale et en mesurant la contrainte latérale générée durant l’incorporation. Le modèle réduit permet l’étude de l’expansion de cavité telle qu’obtenue durant la construction des CB par vibrosubstitution. Les colonnes sont construites à l’intérieur d’une cellule de PVC de 600 mm de haut et de 382 mm de diamètre. Un total de trois colonnes ballastées ont été construites sous une contrainte de 60, 80 et 100 kPa respectivement représentant un taux d’incorporation de près de 4 %. L’incorporation démontre une augmentation de la pression latérale caractérisée par le coefficient de pression latérale K jusqu’à 1.37 et une augmentation de la densité de 44 % à 55 % en moyenne. Une modélisation numérique a ensuite permis de confirmer les résultats expérimentaux et de vérifier le comportement du montage expérimental. La modélisation numérique a été réalisée avec le logiciel PLAXIS 2D 2012 en axisymétrie de révolution et considérant une loi comportementale de type Hardening Soil Model pour le sol encaissant et de type Mohr-Coulomb pour la colonne de pierre. La modélisation numérique a permis de déterminer que la forme de la contrainte verticale sur le sol est parabolique, c’est-à-dire maximale au centre et nulle à l’interface sol-paroi. L’expansion du sol a été simulée par l’imposition d’une déformation volumique anisotropique en cinq couches dans le sens radial et circonférentiel équivalent aux dimensions de la colonne obtenue expérimentalement. Les résultats numériques ont démontré une erreur de < 1 % pour la CB #1, de pour la CB #2 et de < 30 % pour la CB #3. L’erreur rencontrée sur la dernière colonne effectuée sous une contrainte verticale de 60 kPa peut-être associés à une mesure erronée lors de l'expérimentation. L’obtention des résultats expérimentaux par modélisation numérique a confirmé la fonctionnalité du montage expérimental et de la procédure de construction des CB en laboratoire. Cela ouvre la porte à des études subséquentes de l’effet de la mise en place des CB sur le sol encaissant en incorporant la vibration et la saturation du sable reproduisant la technique de vibrosubstitution.
6

El modelamiento numérico en la resolución de problemas geotécnicos

Cier Honores, Roberto Jesús 10 April 2018 (has links)
El presente artículo es una reseña sobre los avances presentados hasta la actualidad en el campo del modelamiento numérico en la resolución de problemas geotécnicos. Se muestran algunos de los problemas a los que se enfrenta la ingeniería geotécnica en la actualidad, y cómo es que el modelamiento numérico se ha convertido en una alternativa efectiva de solución ante problemas complejos en los proyectos en geotecnia. Además de ello, se presenta un ejemplo en el que el modelamiento numérico sirve como herramienta para la validación de métodos analíticos tradicionales en mecánica de suelos. Por último, se presentan algunos de los futuros avances que se esperan sean alcanzados a fin de mejorar los resultados que, hoy en día, son obtenidos con este método de resolución.
7

Stability Analysis of Shallow Tunnel of Norra Länken

Imran Khan, Rana Muhammad Sajid, Man Shrestha, Kabindra January 2011 (has links)
Shallow Tunneling through highly populated areas of big cities is a challenging task. Almost in all the tunneling projects of shallow tunnel some or the other types of tunneling problems have been encountered and are still being faced. The stability of shallow tunnel is also influenced by many factors, primarily the in situ stress, geological structures, groundwater, rock mass quality, shape of tunnel etc. The design of shallow tunnel in past was almost purely a matter of experience. During last decays computational methods have been introduced as powerful design aids tool to arrive at safe and economical shallow tunnel structure. The purpose of this thesis work is to provide technical criteria and guidance for the design, and stability of Norra Länken shallow tunnel in rock for civil works projects. The design of shallow tunnels in highly dense areas is an iterative process. A good starting point is essential to the process and facilitates safe and economic design. Currently there are many practical two and three-dimensional software tools available for carrying out the task. This master thesis provides an overview of a methodology being used by tunneling experts, which captures the three-dimensional essentials of tunnel behaviour with two-dimensional analysis tools, PLAXIS. Though it is not a full and final situation and conclusion, but there is a lot to learn from such conditions .
8

Estimating the effectiveness of stone columns in mitigating post-liquefaction settlement using Plaxis 2D

Maharjan, Roisha 12 January 2024 (has links)
When the excess pore water pressure generated during an earthquake dissipates in saturated loose sand, it causes post-liquefaction reconsolidation that can potentially yield substantial damage to the structure. To build resilient infrastructure, it is paramount to estimate these settlements as well as introduce soil reinforcement techniques to mitigate associated risks. Although there are abundant studies on liquefaction triggering assessment, the study of post-liquefaction settlement and the effects of stone columns as soil reinforcement is a relatively less established field. Generally, simplified empirical methods are employed for settlement evaluations. However, they possess several limitations such as the influence of non-liquefiable layers, soil fabric, permeability, and so on. Numerical models can be utilized to capture these effects with proper validation. This study evaluates the performance of stone columns in reducing seismically induced post-liquefaction settlement utilizing the Finite Element Method (FEM) and constitutive relationship, PM4Sand model, as it has been extended to account for reconsolidation settlement. The ability of the numerical framework to capture reconsolidation settlement is validated by replicating a shake table test performed on Ottawa F-55 sand. Results are compared with a previous numerical study inspired by the same experiment. After validation, a generic numerical model is proposed, and the performance of the natural ground and the reinforced ground is compared. A parametric analysis using 12 different ground motions is performed to assess the effect of varying ground motion intensity on the post-liquefaction settlement. The analysis is also performed with the conventional PM4Sand model (without the extension for reconsolidation). Finally, simulations are performed with a footing load above the soil model. The results demonstrate that (a) the presence of stone columns reduces post-liquefaction settlement, and (b) conventional constitutive models can highly underpredict post-liquefaction settlement. Further research is required to assess the effects of (a) 3D, (b) variations in permeability, (c) parametric analysis of stone columns, and (d) densification of stone columns. / Master of Science / When subjected to an earthquake, loose saturated sand may undergo liquefaction and exhibit a reduction in shear strength due to a rise in excess pore water pressure and the corresponding reduction in effective stress. This leads to failures associated with settlements resulting from the gradual dissipation of excess pore pressures. This mechanism results in post-liquefaction settlement. Several authors have investigated the mechanism of the post-liquefaction behavior of sand and proposed methodologies to assess the deformation caused by seismic loads. They mainly conclude that the reconsolidation mechanism is characterized by a decrease in the overall soil stiffness and an increase in permeability. Among different methodologies to quantify this settlement, finite element numerical modeling is the most widely used. The primary task in performing such numerical simulation is to select the best constitutive model (i.e., stress-strain relationships) that can accurately capture post-liquefaction behavior. In this study, the capabilities and limitations of the most common constitutive models are reviewed. Moreover, the efficacy of stone columns is also assessed to mitigate the risk posed by liquefaction. Firstly, the numerical framework is validated against data from a shake table test experiment. Then, a numerical model is proposed and subjected to different seismic motions. The settlement of the ground with and without stone columns is assessed and compared for all motions. In addition, the efficacy of stone columns is also analyzed by simulating the model with a footing load. Thus, this study provides insights into the effectiveness of stone columns under different seismic motions.
9

Modellering av grundläggning och jord i FEM-Design : En studie av geomodulerna 3D Soil och Pile / Modeling of foundation and soil in FEM-Design : A study of the geo-modules 3D Soil and Pile

Natalie, Hernborg, Strid, Tobias January 2018 (has links)
Beräkning med finita elementmetoden, FEM, är en vanlig metod vid lastnedräkning för bärande konstruktioner. Vid FEM-modellering inom huskonstruktion måste konstruktören på något sätt även modellera markens egenskaper för att uppnå statisk jämvikt i modellen. Att låta byggnaden vila på oeftergivliga stöd fungerar vid grundläggning på berg, men i övriga fall måste jordens deformation vid belastning simuleras. Ett vanligt tillvägagångssätt är att konstruktören samarbetar med en geotekniker som beräknar sättningar i jorden utifrån de laster konstruktören beräknat. Det görs i ett geotekniskt FEM-program som exempelvis PLAXIS. Utifrån geoteknikerns resultat beräknar konstruktören fjäderstöd som får simulera marken. Därefter kan deformationer i byggnaden studeras.    Denna studie har prövat en alternativ metod. Hus, grundläggning och undergrund har modellerats i en gemensam modell i FEM-Design 3D Structure 17. Syftet med att undersöka detta var möjligheten till effektiviseringar av arbetsflödet. Om konstruktören kan modellera allt i samma modell skulle flera arbetsmoment kunna sparas. Risken för fel då data tolkas och flyttas mellan olika program skulle också elimineras.   Som fallstudie användes ett sexvåningshus med både pål- och plattgrundläggning. En befintlig modell med fjäderstöd beräknade i PLAXIS gjordes om till en komplett modell med byggnad, grundplattor, pålar och jord som finita element. FEM-Design kunde dock inte beräkna något resultat för modellen. Modulen Pile som modellerar pålar och modulen 3D Soil som modellerar jorden som solida element var inte kompatibla. Studien övergick då till att undersöka enskilda grundläggningselement separat. Pålar och plattor lyftes ut från den stora modellen och studerades dels med externt beräknade fjäderstöd och dels med FEM-Designs geotekniska moduler. Resultaten visade större deformationer för de modeller som var modellerade med 3D Soil. För Pile var resultaten att betrakta som likvärdiga.   En tydlig slutsats är att för husprojekt med både pål- och plattgrundläggning kan byggnad och undergrund inte modelleras tillsammans i FEM-Design. Programmets utvecklare StruSoft har planer på att utveckla funktionerna i framtiden så att de kan användas tillsammans, men det finns ingen prognos för när det kan vara klart. För byggnader med endast en grundläggningstyp kan respektive modul däremot användas. Det ska understrykas att en konstruktör som ska modellera undergrunden själv måste ha goda geotekniska kunskaper för att kunna hantera modulerna korrekt. Den optimala arbetsgången skulle enligt författarna vara att konstruktören och geoteknikern arbetade i samma modelleringsprogram i en gemensam modell. / The finite element method, FEM, is a common method for load calculation in building construction design. In addition to the structure itself, the structural engineer must also model the soil response to achieve static equilibrium in the model. Using unyielding supports works for structures founded on rock, but in other cases the soil deformation must be simulated somehow. A common approach is that the structural engineer collaborates with a geotechnician who calculates the settlements in the soil due to the loads provided by the structural engineer. This is done in a geotechnical FEM program, e.g. PLAXIS. The structural engineer then uses the PLAXIS results to calculate spring supports simulating the soil response. The settlements in the structure can then be studied.   This study has evaluated a different approach. The structure, foundation slabs, piles and subgrade has been modeled in a common model in the program FEM-Design 3D Structure 17. The study identified several possible benefits if the method proved reliable. If the structural engineer could model everything in one model, several work steps could be excluded. It would also eliminate the risk of errors that may occur when data is to be interpreted and moved between different programs.   The studied case is a six-storey residential building founded on both piles and foundation slabs. An existing model with spring supports calculated in PLAXIS was modified into a complete model with structure, foundation slabs, piles and soil as finite elements. The complete model proved unable to produce any results. The Pile module and the 3D Soil module turned out to be incompatible. Facing this fact, the study decided to evaluate separate foundation elements individually. Piles and foundation slabs were extracted from the full model and studied first with externally calculated spring supports and then with the FEM-Design geotechnical modules. The results displayed larger deformations for the 3D Soil models. For the Pile module, the results should be regarded as equivalent.   The major conclusion is that a building founded on both piles and foundation slabs is not possible to model together with subgrade in FEM-Design. The program developer StruSoft may develop the features in the future so that they can work together, but there is no forecast for when this can be done. However, the features can be used separately for structures with only one type of foundation. It should be emphasized that a structural engineer who is going to model the subgrade must have good geotechnical knowledge in order to handle the modules correctly. According to the authors, the optimal workflow would be that the structural engineer and the geotechnician worked in the same modeling program in a common model.
10

[en] A NUMERICAL ANALYSIS OF THE BEHAVIOR OF TIED-BACK EARTH RETAINING WALLS / [pt] ANÁLISE NUMÉRICA DO COMPORTAMENTO DE CORTINAS ATIRANTADAS EM SOLOS

JAVIER ZENOBIO PEREZ MORE 14 November 2003 (has links)
[pt] A necessidade da execução de escavações urbanas cada vez mais profundas tem imposto aos engenheiros geotécnicos o grande desafio de equilibrar elevados esforços horizontais com um mínimo de deslocamentos do maciço de solo e das estruturas localizadas nas vizinhanças. Para muitos destes casos, a utilização de cortinas atirantadas se constitui na solução técnica mais adequada. As primeiras obras com ancoragem em solo surgiram em diversos países (Alemanha, Itália, França) no final da década de 1950, numa evolução direta da técnica de ancoragem em maciços de rocha, e no Brasil esta técnica foi pela primeira vez empregada no Rio de Janeiro em 1957 nas rodovias Rio - Teresópolis e Grajaú - Jacarepaguá. Um grande avanço ocorreu na década de 1970, na implantação das obras do metrô de São Paulo, com a introdução de ancoragens reinjetáveis com calda de cimento sob altas pressões. Atualmente, ancoragens em solo são executadas intensamente em muitos países com cargas que em geral ainda não ultrapassam a 1500 kN. Esta dissertação tem como objetivo principal o estudo do comportamento de cortinas ancoradas em solo, incluindo uma revisão dos principais métodos para análises de estabilidade e obtenção da capacidade de carga. A utilização do método dos elementos finitos, através do programa comercial Plaxis v.7.2, permitiu a comparação dos valores do fator de segurança calculados com métodos de equilíbrio limite, bem como a realização de estudos paramétricos com o objetivo de verificar a influência no comportamento mecânico da cortina de vários parâmetros de projeto, tais como a espessura da cortina, ângulo de inclinação dos tirantes, embutimento da estrutura, etc. / [en] The need for deeper urban excavations has imposed to geotechnical engineers the great challenge of balancing high horizontal forces with occurrence of minimum displacements in soil as well as in the structures nearby. In many of such cases, tied-back earth retaining walls are the technical solution the most recommended. The use of ground anchorage, as a direct extension of the rock anchoring technique, began in several countries (Germany, Italy, France) during the decade of 1950. In Brazil, the first application occurred in the construction of the Rio - Teresópolis and Grajaú - Jacarepaguá highways in the State of Rio de Janeiro, in 1957, and it experimented an important development during excavation of galleries for the Sao Paulo subway, in the decade of 1970, where high pressure grouting has been firstly applied as an industrial process. Currently, soil anchorages are intensely executed throughout the world, carrying loads that in general are not higher than 1500 kN yet. This main objective of this thesis is to study the mechanical behavior of tied-back earth retaining walls, including a comprehensive review on the main methods used for stability analyses and load capacity calculation. The finite element method, through the commercial software Plaxis v.7.2, is employed in order to compare the values obtained for the safety factors through several techniques, as well as to carry out a parametric study to better understand the influence on the retaining wall of several engineering parameters such as the wall thickness, angle and number of ties, depth of wall embedment, etc.

Page generated in 0.031 seconds