• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase And Amplitude Modulated Ofdm For Dispersion Managed Wdm Systems

Eisele, Andreas 01 January 2008 (has links)
Amplitude and phase modulated optical OFDM (Orthogonal Frequency Division Multiplexing) are analyzed in a 50GBit/s single channel and 40GBit/s 5 channel 512 subcarrier non-ideal dispersion-compensated fiber optic communication systems. PM-OFDM is investigated as an alternative to AM-OFDM to alleviate the problem associated with amplitude-modulated signals in a nonlinear medium. The inherent dispersion compensation capability in OFDM (using a cyclic prefix) allows transmission over a link whose dispersion map is not exactly known. OFDM also mitigates the effects of dispersion slope in wavelength-division multiplexed (WDM) systems. Moreover, the overall dispersion throughout the transmission link may vary due to environmental effects and aging. OFDM is inherently tolerant to over- or under-compensation and dispersion slope mismatch. OFDM transmission over dispersive, non-dispersion managed fiber links using OFDM requires an overhead in excess of the maximum accumulated dispersion. Existing WDM systems usually employ periodic dispersion management. OFDM in these systems requires a smaller overhead. It is, however, more susceptible to nonlinearity due to the coherent beating of subcarriers after each dispersion-compensated span. The large variation in intensity associated with amplitude-modulated OFDM makes this modulation format more susceptible to nonlinear effects in fiber compared to phase-modulated signals. This holds true unless dispersion and EDFA noise lead to amplitude variations strong enough for PM-OFDM to be degraded by nonlinear effects as well. In conclusion OFDM is beneficial for non-ideal dispersion managed systems. PM-OFDM can further improve the performance.

Page generated in 0.0271 seconds