1 |
The effect of PMMA stimulated Complement-Macrophage cascade on Osteogenesis of Preosteoblast-like MC3T3-E1 cells on PMMA surfaceZheng, Fengyuan January 2010 (has links)
No description available.
|
2 |
Plasma Surface Modification And Characterization Of Pmma FilmsOzgen, Ozge 01 December 2011 (has links) (PDF)
ABSTRACT
PLASMA SURFACE MODIFICATION AND CHARACTERIZATION OF
PMMA FILMS
Ö / zgen, Ö / zge
M.Sc., Department of Polymer Science and Technology
Supervisor: Prof. Dr. Nesrin Hasirci
Co-supervisor: Prof. Dr. Vasif Hasirci
December 2011, 114 pages
Surface properties play an essential role for determining the behavior of a material for many applications such as coating, printing, adhesion and prosthesis implanting since the surface is the first part that comes in contact with the environment. Although the bulk properties of some materials are at the desired level, the surface may need to be modified for a better compatibility with its surrounding. Plasma treatment is one generally preferred technique because of its high potential to create various functional groups on the surface of the sample by changing the applied plasma parameters. Some molecules can be successfully immobilized onto these surfaces using these specific chemical functional groups created by plasma. The type of the functional group is important for intended purpose of covalent binding of different molecules on the surface of a material. Present study offers important routes for optimization of the surface functionality of (PMMA) films by changing the plasma parameters. For this purpose, solvent casted polymethylmetacrylate PMMA films were modified by, nitrogen, argon and oxygen plasma by using a radiofrequency (RF) generator / and with various powers (10W, 50W, 100W) for different periods (5min, 15min and 30min). The effects of these plasma parameters (gas type, applied power, plasma time) on hydrophilicity, surface free energy, surface chemistry, and surface topography were investigated. Also, the types of surface free radicals created with oxygen plasma treatment were analysed and the decay of these radicals were examined by Electron Spin Resonance Spectroscopy (ESR). In general, plasma treatment reduced the contact angle of PMMA films where the most hydrophilic surface was obtained for 100W 30 min argon plasma treated sample showing superhydrophilic character with the water contact angle value of ~10° / . Surface free energy measurements were carried out according to Geometric Mean, Harmonic Mean, Acid-Base approach and it was found that oxygen, nitrogen and argon plasma treatments increased the surface free energy for all samples by increasing the polar components and introducing functional groups on the surface. X-Ray Photoelectron Spectroscopy (XPS) analysis results revealed that free carbonyl and carbonate groups were formed by oxygen plasma treatment, whereas carboxylic acid and free carbonyl groups were formed after argon plasma treatment, and imine, primary amine, amide and nitrozo groups were formed by nitrogen plasma. Atomic Force Microscopy (AFM) analysis revealed that the roughness of the surface increased considerably from ~2 nm to ~75 nm for the 100W 30 min oxygen plasma treated samples. ESR analysis indicated the presence of peroxy radicals on the surface of the oxygen plasma treated PMMA and the intensity of these radicals increased with increasing plasma power. Decay study of the newly created radicals demonstrated that after 1 month under the atmospheric conditions there were still peroxy radicals on the surface of PMMA. This functionality is important in leading time for further process for binding of different molecules to the surface of the materials for specific purposes. As a result, RF plasma was found to be an effective tool for modification of surface properties of materials with product diversity for intended purposes.
|
Page generated in 0.0258 seconds