• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An LTCC Based Compact SIW Antenna Array Feed Network for a Passive Imaging Radiometer

Abuzaid, Hattan 05 February 2013 (has links)
Passive millimeter-wave (PMMW) imaging is a technique that allows the detection of inherent millimeter-wave radiation emitted by bodies. Since different bodies with varying properties emit unequal power intensities, a contrast can be established to detect their presence. The advantage of this imaging scheme over other techniques, such as optical and infrared imaging, is its ability to operate under all weather conditions. This is because the relatively long wavelengths of millimeter-waves, as compared to visible light, penetrate through clouds, fog, and sandstorms. The core of a PMMW camera is an antenna, which receives the electromagnetic radiation from a scene. Because PMMW systems require high gains to operate, large antenna arrays are typically employed. This mandatory increase of antenna elements is associated with a large feeding network. Therefore, PMMW cameras usually have a big profile. In this work, two enabling technologies, namely, Substrate integrated Waveguide (SIW) and Low Temperature Co-fired Ceramic (LTCC), are coupled with an innovative design to miniaturize the passive front-end. The two technologies synergize very well with the shielded characteristics of SIW and the high density multilayer integration of LTCC. The proposed design involves a novel multilayer power divider, which is incorporated in a folded feed network structure by moving between layers. The end result is an efficient feeding network, which footprint is least affected by an increase in array size. This is because the addition of more elements is accommodated by a vertical expansion rather than a lateral one. To characterize the feed network, an antenna array has been designed and integrated through efficient transitions.The complete structure has been simulated and fabricated. The results demonstrate an excellent performance, manifesting in a gain of 20 dBi and a bandwidth of more than 11.4% at 35 GHz. These values satisfy the general requirements of a PMMW system.

Page generated in 0.0301 seconds