1 |
Alternating copolymers containing side-chain liquid crystal groupsChristie, David W. January 1999 (has links)
The copolymerisation of N-ethyl maleimide (NEM) with ethyl vinyl ether (EVE) in benzene (Bz) was investigated. The copolymerisation displays a tendency towards alternation but is not alternating and propagation involves the formation of a 1:1 NEM/EVE charge-transfer complex. This complex and the monomer/solvent complexes were investigated by <sup>1</sup>H NMR spectroscopic methods. The equilibria were combined mathematically to model the NEM/EVE/Bz system. The copolymerisations of functionalised N-substituted maleimides, N-4-[6-(4'-methoxy-4-azobenzoxy) hexoxycarbonyl] phenylmaleimide (NMeAz6PM) and N-4-[6-(4'-nitro-4-azobenzoxy)hexoxycarbonyl] phenylmaleimide (NNitAz6PM), with styrene (St), 4-vinyl pyridine (4VP), or EVE as the comonomer were studied and the reactivity ratios calculated. The monomer pairs NMeAz6PM/St, NMeAz6PM/4VP and NNitAz6PM/St produce alternating copolymers but NMeAz6PM/EVE does not. The absence of liquid crystallinity in these materials was attributed to the rigidity of the polymer backbone coupled with the low mesogen content arising from the alternating backbone. Blends of amorphous maleimide based copolymers with 6-(4-methoxy-4'-azobenzoxy)hexanoic acid, 4.2, were investigated. The copolymers chosen were believed to be alternating and are the product of the copolymerisation of N-phenyl, N-(4-methoxy) phenyl, or N-(4-hydroxy) phenyl maleimide with St or 4VP. 4.2 is essentially immiscible with the St based copolymers. However 4.2 is miscible with the 4VP based copolymers and liquid crystallinity is induced. This behaviour is attributed to the formation of hydrogen bonds between 4.2 and the pyridyl units of the copolymer backbone. Blends of 4.2 or 6-(4-nitro-4'azobenzoxy)hexanoic acid, 5.2, with copoly(NMeAz6PM-alt-St) or copoly(NMeAz6PM-alt-4VP) were investigated. The limited miscibility and liquid crystalline behaviour of the acid/styrene copolymer blends was attributed to interactions between the mesogens on the copolymer and the acid. However, the enhanced miscibility and liquid crystalline behaviour seen in the pyridine blends can be attributed to the formation of hydrogen bonds between the acids and the pyridyl units of the backbone, in addition to the acid/copolymer mesogen interactions.
|
2 |
Synthesis and electrochemistry of pyrrole derivativesMillan Barrios, Enrique Jose January 1996 (has links)
No description available.
|
Page generated in 0.0278 seconds