231 |
Linear coordinates, test elements, retracts and automorphic orbitsGong, Shengjun., 龔勝軍. January 2008 (has links)
published_or_final_version / Mathematics / Doctoral / Doctor of Philosophy
|
232 |
Local polynomial estimation of the counting process intensity functionand its derivativesChen, Feng, 陳鋒 January 2008 (has links)
published_or_final_version / Statistics and Actuarial Science / Doctoral / Doctor of Philosophy
|
233 |
Understanding complex numbers and identifying complex roots graphicallyWhitfield, Lakesha Rochelle 13 September 2010 (has links)
This master’s report seeks to increase knowledge of complex numbers and how to identify complex roots graphically. The reader will obtain a greater understanding of the history of complex numbers, the definition of a complex number and a few of the field properties of complex numbers. Readers will also be enlightened on how to visibly detect complex roots of polynomials of the second, third and fourth degree. / text
|
234 |
The distribution of roots of certain polynomialRodríguez, Miguel Antonio, 1972- 07 October 2010 (has links)
Abstract not available. / text
|
235 |
Continued fractions and sequencesLauder, Alan George Beattie January 1999 (has links)
No description available.
|
236 |
Identification of nonlinear discrete systems with intelligent structure detectionMendes, Eduardo Mazoni Andrade Marcal January 1995 (has links)
No description available.
|
237 |
Intersection of algebraic plane curves : some results on the (monic) integer transfinite diameterHilmar, Jan January 2008 (has links)
Part I discusses the problem of determining the set of intersection points, with corresponding multiplicities, of two algebraic plane curves. We derive an algorithm based on the Euclidean Algorithm for polynomials and show how to use it to find the intersection points of two given curves. We also show that an easy proof of Bézout’s Theorem follows. We then discuss how, for curves with rational coefficients, this algorithm can bemodified to find the intersection points with coordinates expressed in terms of algebraic extensions of the rational numbers. Part II deals with the problem of determining the (monic) integer transfinite diameter of a given real interval. We show how this problem relates to the problem of determining the structure of the spectrum of normalised leading coefficients of polynomials with integer coefficients and all roots in the given interval. We then find dense regions of this spectrum for a number of intervals and discuss algorithms for finding discrete subsets of the spectrum for the interval [0,1]. This leads to an improvement in the known upper bound for the integer transfinite diameter. Finally, we discuss the connection between the infimum of the spectrum and the monic integer transfinite diameter.
|
238 |
On the concordance orders of knotsCollins, Julia January 2011 (has links)
This thesis develops some general calculational techniques for finding the orders of knots in the topological concordance group C . The techniques currently available in the literature are either too theoretical, applying to only a small number of knots, or are designed to only deal with a specific knot. The thesis builds on the results of Herald, Kirk and Livingston [HKL10] and Tamulis [Tam02] to give a series of criteria, using twisted Alexander polynomials, for determining whether a knot is of infinite order in C. There are two immediate applications of these theorems. The first is to give the structure of the subgroups of the concordance group C and the algebraic concordance group G generated by the prime knots of 9 or fewer crossings. This should be of practical value to the knot-theoretic community, but more importantly it provides interesting examples of phenomena both in the algebraic and geometric concordance groups. The second application is to find the concordance orders of all prime knots with up to 12 crossings. At the time of writing of this thesis, there are 325 such knots listed as having unknown concordance order. The thesis includes the computation of the orders of all except two of these. In addition to using twisted Alexander polynomials to determine the concordance order of a knot, a theorem of Cochran, Orr and Teichner [COT03] is applied to prove that the n-twisted doubles of the unknot are not slice for n ≠ 0,2. This technique involves analysing the `second-order' invariants of a knot; that is, slice invariants (in this case, signatures) of a set of metabolising curves on a Seifert surface for the knot. The thesis extends the result to provide a set of criteria for the n-twisted double of a general knot K to be slice; that is, of order 0 in C. The structure of the knot concordance group continues to remain a mystery, but the thesis provides a new angle for attacking problems in this field and it provides new evidence for long-standing conjectures.
|
239 |
Exploring fields with shift registersRadowicz, Jody L. 09 1900 (has links)
The S-Boxes used in the AES algorithm are generated by field extensions of the Galois field over two elements, called GF(2). Therefore, understanding the field extensions provides a method of analysis, potentially efficient implementation, and efficient attacks. Different polynomials can be used to generate the fields, and we explore the set of polynomials x^ 2 + x + a^J over GF(2^n) where a is a primitive element of GF(2^n). The results of this work are the first steps towards a full understanding of the field that AES computation occurs in-GF(2^8). The charts created with the data we gathered detail which power of the current primitive root is equal to previous primitive roots for fields up through GF(2^16) created by polynomials of the form x^2 + x + a^i for a primitive element a. Currently, a C++ program will also provide all the primitive polynomials of the form x^2 + x+ a^i for a primitive element a over the fields through GF(2^32). This work also led to a deeper understanding of certain elements of a field and their equivalent shift register state. In addition, given an irreducible polynomial 2 f(x) = x^2 + a^i x + a^j over GF(2^n), the period (and therefore the primitivity) can be determined by a new theorem without running the shift register generated by f(x).
|
240 |
Discrete event dynamic systems in max-algebra : realisation and related combinatorial problemsMurfitt, Louise January 2000 (has links)
No description available.
|
Page generated in 0.0164 seconds