• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric POMDPs for planning in continuous state spaces

Brooks, Alex January 2007 (has links)
PhD / This thesis is concerned with planning and acting under uncertainty in partially-observable continuous domains. In particular, it focusses on the problem of mobile robot navigation given a known map. The dominant paradigm for robot localisation is to use Bayesian estimation to maintain a probability distribution over possible robot poses. In contrast, control algorithms often base their decisions on the assumption that a single state, such as the mode of this distribution, is correct. In scenarios involving significant uncertainty, this can lead to serious control errors. It is generally agreed that the reliability of navigation in uncertain environments would be greatly improved by the ability to consider the entire distribution when acting, rather than the single most likely state. The framework adopted in this thesis for modelling navigation problems mathematically is the Partially Observable Markov Decision Process (POMDP). An exact solution to a POMDP problem provides the optimal balance between reward-seeking behaviour and information-seeking behaviour, in the presence of sensor and actuation noise. Unfortunately, previous exact and approximate solution methods have had difficulty scaling to real applications. The contribution of this thesis is the formulation of an approach to planning in the space of continuous parameterised approximations to probability distributions. Theoretical and practical results are presented which show that, when compared with similar methods from the literature, this approach is capable of scaling to larger and more realistic problems. In order to apply the solution algorithm to real-world problems, a number of novel improvements are proposed. Specifically, Monte Carlo methods are employed to estimate distributions over future parameterised beliefs, improving planning accuracy without a loss of efficiency. Conditional independence assumptions are exploited to simplify the problem, reducing computational requirements. Scalability is further increased by focussing computation on likely beliefs, using metric indexing structures for efficient function approximation. Local online planning is incorporated to assist global offline planning, allowing the precision of the latter to be decreased without adversely affecting solution quality. Finally, the algorithm is implemented and demonstrated during real-time control of a mobile robot in a challenging navigation task. We argue that this task is substantially more challenging and realistic than previous problems to which POMDP solution methods have been applied. Results show that POMDP planning, which considers the evolution of the entire probability distribution over robot poses, produces significantly more robust behaviour when compared with a heuristic planner which considers only the most likely states and outcomes.
2

Parametric POMDPs for planning in continuous state spaces

Brooks, Alex January 2007 (has links)
PhD / This thesis is concerned with planning and acting under uncertainty in partially-observable continuous domains. In particular, it focusses on the problem of mobile robot navigation given a known map. The dominant paradigm for robot localisation is to use Bayesian estimation to maintain a probability distribution over possible robot poses. In contrast, control algorithms often base their decisions on the assumption that a single state, such as the mode of this distribution, is correct. In scenarios involving significant uncertainty, this can lead to serious control errors. It is generally agreed that the reliability of navigation in uncertain environments would be greatly improved by the ability to consider the entire distribution when acting, rather than the single most likely state. The framework adopted in this thesis for modelling navigation problems mathematically is the Partially Observable Markov Decision Process (POMDP). An exact solution to a POMDP problem provides the optimal balance between reward-seeking behaviour and information-seeking behaviour, in the presence of sensor and actuation noise. Unfortunately, previous exact and approximate solution methods have had difficulty scaling to real applications. The contribution of this thesis is the formulation of an approach to planning in the space of continuous parameterised approximations to probability distributions. Theoretical and practical results are presented which show that, when compared with similar methods from the literature, this approach is capable of scaling to larger and more realistic problems. In order to apply the solution algorithm to real-world problems, a number of novel improvements are proposed. Specifically, Monte Carlo methods are employed to estimate distributions over future parameterised beliefs, improving planning accuracy without a loss of efficiency. Conditional independence assumptions are exploited to simplify the problem, reducing computational requirements. Scalability is further increased by focussing computation on likely beliefs, using metric indexing structures for efficient function approximation. Local online planning is incorporated to assist global offline planning, allowing the precision of the latter to be decreased without adversely affecting solution quality. Finally, the algorithm is implemented and demonstrated during real-time control of a mobile robot in a challenging navigation task. We argue that this task is substantially more challenging and realistic than previous problems to which POMDP solution methods have been applied. Results show that POMDP planning, which considers the evolution of the entire probability distribution over robot poses, produces significantly more robust behaviour when compared with a heuristic planner which considers only the most likely states and outcomes.
3

Formalizing and Enforcing Purpose Restrictions

Tschantz, Michael Carl 09 May 2012 (has links)
Privacy policies often place restrictions on the purposes for which a governed entity may use personal information. For example, regulations, such as the Health Insurance Portability and Accountability Act (HIPAA), require that hospital employees use medical information for only certain purposes, such as treatment, but not for others, such as gossip. Thus, using formal or automated methods for enforcing privacy policies requires a semantics of purpose restrictions to determine whether an action is for a purpose. We provide such a semantics using a formalism based on planning. We model planning using a modified version of Markov Decision Processes (MDPs), which exclude redundant actions for a formal definition of redundant. We argue that an action is for a purpose if and only if the action is part of a plan for optimizing the satisfaction of that purpose under the MDP model. We use this formalization to define when a sequence of actions is only for or not for a purpose. This semantics enables us to create and implement an algorithm for automating auditing, and to describe formally and compare rigorously previous enforcement methods. We extend this formalization to Partially Observable Markov Decision Processes (POMDPs) to answer when information is used for a purpose. To validate our semantics, we provide an example application and conduct a survey to compare our semantics to how people commonly understand the word “purpose”.
4

TaxiWorld: Developing and Evaluating Solution Methods for Multi-Agent Planning Domains

January 2011 (has links)
abstract: TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all be set on a scenario-by-scenario basis. The taxis must attempt to service the fares as quickly as possible, by picking each one up and carrying it to its drop-off location. The TaxiWorld scenario is formally modeled using both Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision Processes (MMDPs). The purpose of developing formal models is to learn how to build and use formal Markov models, such as can be given to planners to solve for optimal policies in problem domains. However, finding optimal solutions for Dec-POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an improvement to the method already in use on the simulator, and the methods were compared in identical scenarios to determine which is more effective. The empirical method is of course not optimal - rather, it attempts to simply account for some of the most important factors to achieve an acceptable level of effectiveness while still retaining a reasonable level of computational complexity for online solving. / Dissertation/Thesis / M.S. Computer Science 2011
5

Formation dynamique d'équipes dans les DEC-POMDPS ouverts à base de méthodes Monte-Carlo / Dynamic team formation in open DEC-POMDPs with Monte-Carlo methods

Cohen, Jonathan 13 June 2019 (has links)
Cette thèse traite du problème où une équipe d'agents coopératifs et autonomes, évoluant dans un environnement stochastique partiellement observable, et œuvrant à la résolution d'une tâche complexe, doit modifier dynamiquement sa composition durant l'exécution de la tâche afin de s'adapter à l'évolution de celle-ci. Il s'agit d'un problème qui n'a été que peu étudié dans le domaine de la planification multi-agents. Pourtant, il existe de nombreuses situations où l'équipe d'agent mobilisée est amenée à changer au fil de l'exécution de la tâche.Nous nous intéressons plus particulièrement au cas où les agents peuvent décider d'eux-même de quitter ou de rejoindre l'équipe opérationnelle. Certaines fois, utiliser peu d'agents peut être bénéfique si les coûts induits par l'utilisation des agents sont trop prohibitifs. Inversement, il peut parfois être utile de faire appel à plus d'agents si la situation empire et que les compétences de certains agents se révèlent être de précieux atouts.Afin de proposer un modèle de décision qui permette de représenter ces situations, nous nous basons sur les processus décisionnels de Markov décentralisés et partiellement observables, un modèle standard utilisé dans le cadre de la planification multi-agents sous incertitude. Nous étendons ce modèle afin de permettre aux agents d'entrer et sortir du système. On parle alors de système ouvert. Nous présentons également deux algorithmes de résolution basés sur les populaires méthodes de recherche arborescente Monte-Carlo. Le premier de ces algorithmes nous permet de construire des politiques jointes séparables via des calculs de meilleures réponses successives, tandis que le second construit des politiques jointes non séparables en évaluant les équipes dans chaque situation via un système de classement Elo. Nous évaluons nos méthodes sur de nouveaux jeux de tests qui permettent de mettre en lumière les caractéristiques des systèmes ouverts. / This thesis addresses the problem where a team of cooperative and autonomous agents, working in a stochastic and partially observable environment towards solving a complex task, needs toe dynamically modify its structure during the process execution, so as to adapt to the evolution of the task. It is a problem that has been seldom studied in the field of multi-agent planning. However, there are many situations where the team of agents is likely to evolve over time.We are particularly interested in the case where the agents can decide for themselves to leave or join the operational team. Sometimes, using few agents can be for the greater good. Conversely, it can sometimes be useful to call on more agents if the situation gets worse and the skills of some agents turn out to be valuable assets.In order to propose a decision model that can represent those situations, we base upon the decentralized and partially observable Markov decision processes, the standard model for planning under uncertainty in decentralized multi-agent settings. We extend this model to allow agents to enter and exit the system. This is what is called agent openness. We then present two planning algorithms based on the popular Monte-Carlo Tree Search methods. The first algorithm builds separable joint policies by computing series of best responses individual policies, while the second algorithm builds non-separable joint policies by ranking the teams in each situation via an Elo rating system. We evaluate our methods on new benchmarks that allow to highlight some interesting features of open systems.
6

Increasing the Value of Information During Planning in Uncertain Environments

Pokharel, Gaurab 30 July 2021 (has links)
No description available.
7

Optimization and Heuristics for Cognitive Radio Design

Bharath Keshavamurthy (8756067) 12 October 2021 (has links)
Cognitive Radio technologies have been touted to be instrumental in solving resource-allocation problems in resource-constrained radio environments. The adaptive computational intelligence of these radios facilitates the dynamic allocation of network resources--particularly, the spectrum, a scarce physical asset. In addition to consumer-driven innovation that is governing the wireless communication ecosystem, its associated infrastructure is being increasingly viewed by governments around the world as critical national security interests--the US Military instituted the DARPA Spectrum Collaboration Challenge which requires competitors to design intelligent radios that leverage optimization, A.I., and game-theoretic strategies in order to efficiently access the RF spectrum in an environment wherein every other competitor is vying for the same limited resources. In this work, we detail the design of our radio, i.e., the design choices made in each layer of the network protocol stack, strategies rigorously derived from convex optimization, the collaboration API, and heuristics tailor-made to tackle the unique scenarios emulated in this DARPA Grand Challenge. We present performance evaluations of key components of our radio in a variety of military and disaster-relief deployment scenarios that mimic similar real-world situations. Furthermore, specifically focusing on channel access in the MAC, we formulate the spectrum sensing and access problem as a POMDP; derive an optimal policy using approximate value iteration methods; prove that our strategy outperforms the state-of-the-art, and facilitates means to control the trade-off between secondary network throughput and incumbent interference; and evaluate this policy on an ad-hoc distributed wireless platform constituting ESP32 radios, in order to study its implementation feasibility.

Page generated in 0.023 seconds