• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 22
  • 20
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 293
  • 74
  • 42
  • 38
  • 35
  • 35
  • 33
  • 32
  • 31
  • 29
  • 26
  • 26
  • 26
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The effects of humidity and lactose grade on pharmaceutical inhalation formulations

Watling, Christopher Peter January 2009 (has links)
No description available.
32

Amorphisation and characterisation of multicomponent Fe-Co-Ni-Zr-B alloys during mechanical alloying

Liu, Yijun January 2000 (has links)
No description available.
33

Dense Phase Conveying of Powders: Design Aspects and Phenomena

Williams, Kenneth January 2008 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Determining the operating parameters and design considerations for dense phase (non-suspension) conveying of fine powders in pneumatic systems typically use empirical, steady-state modelling techniques, as the mechanisms of the flow behaviour are still not fully understood. However, this necessary simplification in the modelling of the dense phase flow still presents significant challenges in ensuring that the predicted outcomes adequately reflect the physical nature of the flow, and therefore provide good design guidance. This thesis represents an examination and development of techniques required for designing dense phase systems of fine powders in three specific areas; prediction of a materials potential to dense phase convey, solids friction correlations and their subsequent effect on pressure drop prediction, and modelling the solids flow from a local perspective. The dense phase capability analysis was conducted by reviewing the current predictive techniques utilising known dense phase material data. It was apparent in the thesis that there were distinct strong predictive regions in all the diagrams; however some diagrams showed areas with weak predictive regions. This work also illustrated the difficulties in comparing different de-aeration rate techniques and significantly, a new mode of flow predictive chart was developed which eliminated the need to determine de-aeration rates while still maintaining distinctly strong dense phase predictive capability. Solids friction based pressure models invariably use a power law which require determination of co-efficient/s and exponent/s. Detailed in this thesis is the research which shows why solutions do not always occur in these power law based friction models and defines a method of determining stable and meaningful values for the exponents. Furthermore, a generic air/particle parameter based solids friction model was developed which is a clear advancement in defining the frictional resistance of dense phase pneumatic conveying of powder. This thesis also proposes a new continuum model which calculates the force balance between the conveying air flow, the resistance of the particles and geometrical effects, like bends. The solution to this model provides qualitative information on fine powder dense phase flow velocity from a solids flow perspective and represents a major step in advancing dense phase modelling from a particle flow basis.
34

Dense Phase Conveying of Powders: Design Aspects and Phenomena

Williams, Kenneth January 2008 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Determining the operating parameters and design considerations for dense phase (non-suspension) conveying of fine powders in pneumatic systems typically use empirical, steady-state modelling techniques, as the mechanisms of the flow behaviour are still not fully understood. However, this necessary simplification in the modelling of the dense phase flow still presents significant challenges in ensuring that the predicted outcomes adequately reflect the physical nature of the flow, and therefore provide good design guidance. This thesis represents an examination and development of techniques required for designing dense phase systems of fine powders in three specific areas; prediction of a materials potential to dense phase convey, solids friction correlations and their subsequent effect on pressure drop prediction, and modelling the solids flow from a local perspective. The dense phase capability analysis was conducted by reviewing the current predictive techniques utilising known dense phase material data. It was apparent in the thesis that there were distinct strong predictive regions in all the diagrams; however some diagrams showed areas with weak predictive regions. This work also illustrated the difficulties in comparing different de-aeration rate techniques and significantly, a new mode of flow predictive chart was developed which eliminated the need to determine de-aeration rates while still maintaining distinctly strong dense phase predictive capability. Solids friction based pressure models invariably use a power law which require determination of co-efficient/s and exponent/s. Detailed in this thesis is the research which shows why solutions do not always occur in these power law based friction models and defines a method of determining stable and meaningful values for the exponents. Furthermore, a generic air/particle parameter based solids friction model was developed which is a clear advancement in defining the frictional resistance of dense phase pneumatic conveying of powder. This thesis also proposes a new continuum model which calculates the force balance between the conveying air flow, the resistance of the particles and geometrical effects, like bends. The solution to this model provides qualitative information on fine powder dense phase flow velocity from a solids flow perspective and represents a major step in advancing dense phase modelling from a particle flow basis.
35

Preparation of pharmaceutical powders using supercritical fluid technology : pharmaceutical applications and physicochemical characterisation of powders /

Velaga, Sitaram P., January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.
36

Decompressive production of micronized powders a parametric study /

Wiser, William January 2007 (has links)
Thesis (M.S.)--University of Wyoming, 2007. / Title from PDF title page (viewed on June 17, 2008). Includes bibliographical references (p. 206-215).
37

Processing of nano-sized boron carbide powder

Silver, Kathleen G.. January 2007 (has links)
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Speyer, Robert; Committee Member: Judson, Elizabeth; Committee Member: Sanders, Thomas. Part of the SMARTech Electronic Thesis and Dissertation Collection.
38

Study of the thickness of adsorbed water layers by atomic force microscopy

Dey, Fiona January 1998 (has links)
The effect of ambient humidity and adsorbed water can be of critical importance in the processing of fine powders in air. Adsorbed water layers can influence the adhesive properties of the powder and may lead to difficulties in processing and handling. It has been shown, in the current work, that in ambient conditions the interaction between two solid surfaces is dominated by the force arising from the presence of adsorbed water layers. In the current work an atomic force microscopy technique has been developed to determine the separation distance at which two solid surfaces, i.e. the AFM cantilever tip and the sample surface, 'jump' into contact. From the separation distance the thickness of the adsorbed water layers on the cantilever tip and sample surface can be determined based on an analytical method originally developed by Forcada (1993), which considers the interacting forces which cause the 'jump' to contact. The adsorbed layer thickness, as a function of relative humidity, has been determined for silicon wafer, using the AFM technique. This localized adsorption isotherm has been compared with those published by other investigators, who have used different measurement techniques on large sample areas. The adsorption isotherm determined using the AFM technique reports adsorbed layer thicknesses that are significantly larger than those measured by other investigators. Adsorption isotherms have been determined, using the AFM technique, for three forms of a-lactose monohydrate, which is widely used throughout the pharmaceutical industry. It was observed that each form of lactose gave a different level of water adsorption. Laboratory grown crystals exhibited the greatest levels of moisture adsorption, while commercially produced milled a-lactose displayed lower levels of water adsorption. Differences in surface roughness may possibly explain the variation. For rough samples the probe tip makes contact with surface asperities and therefore does not detect the presence of condensed water in the surface valleys. It is also possible that surface contamination and process history may have influenced the levels of water adsorption but these are complex effects to quantify. Water adsorption isotherms were measured on bulk samples of classified lactose, to attempt to validate the AFM technique, developed in the current study. It can be observed that the adsorbed layer thicknesses determined using AFM are significantly larger than those inferred from bulk measurements. The AEM method provides layer thickness values which are approximately four times larger than what are believed to be the true values. This is seen for tests on silicon, aluminium and lactose surfaces. This discrepancy is thought to arise from the presence of the probe tip on the surface causing a local spatial inhomogeneity. The associated increase in surface potential will promote nucleation of water molecules, leading ultimately to capillary condensation.
39

The flow of aerated powders

Webb, Peter John January 1988 (has links)
Industrial experiences have shown that powders can unexpectedly change from normal powder flow properties to exhibit liquid-like flow characteristics. This change in flow properties, known as flooding, can result in a major loss of a powder's containment. The prime objective of the research presented in this thesis is to develop a method which quantifies a powder's likelihood to flood, and to identify the conditions where the tendency to flood becomes important. A powder is known to exhibit liquid flow properties at high shear rates or when aerated at or above the minimum fluidisation velocity. The interaction of these two factors, however, is not fully understood. A new type of shear cell is developed which enables the measurement of the shear characteristics of an aerated powder. This shear cell is based on Couette geometry, where a powder sample is sheared between two concentric cylinders, while under controlled aeration conditions. Evaluation of the equipment with a variety of powders identifies that the transition to liquid-like flow properties can occur at low shear velocities and at an aeration substantially below fluidisation. The characterisation of a sample of flooded material shows that additional fine particles significantly increases the tendency for that material to flow like a liquid. The effect of additional fine particles on a selection of powders is studied in detail and powders with a narrow particle size distribution are shown to be most vulnerable to flooding. The quantities of fines required before a powder is likely to show liquid-like flow properties can be small, highlighting that the flooding problem can be significantly effected by segregation. The ability to characterise the effect of small quantities of additional fines on the likelihood to undergo liquid-like flow is an important step forward in understanding the apparent random nature of flooding.
40

Study on the gasification of scrap tyre

王翠玲, Wang, Cuiling. January 2000 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.0285 seconds