• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of Plastid RNA Editing Sites and Molecular Strategy of New Target Acquisition by PPR Protein / 葉緑体RNA編集の進化と、PPRタンパク質による新規標的獲得のための分子戦略

Ishibashi, Kota 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22284号 / 理博第4598号 / 新制||理||1660(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 鹿内 利治, 教授 長谷 あきら, 准教授 竹中 瑞樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Charakterisierung essentieller Faktoren des Nukleinsäuremetabolismus von Chloroplasten

Zoschke, Reimo 02 June 2010 (has links)
Die chloroplastidäre Genexpression ist durch charakteristische posttranskriptionelle Ereignisse, wie RNA-Prozessierung, RNA-Stabilität, RNA-Edierung oder RNA-Spleißen gekennzeichnet. Diese Prozesse werden fast ausnahmslos durch kernkodierte Proteine realisiert. PPR-Proteine (Pentatricopeptid repeat) stellen unter diesen kernkodierten Faktoren die größte Proteinfamilie dar. Das plastidäre Protein P67 gehört zur kleinen Untergruppe der PPR-Proteine mit SMR-Domäne (small MutS-related), deren molekulare Funktion im organellären Nukleinsäuremetabolismus bislang unverstanden ist. P67 zeigt eine nahe Verwandtschaft zu GUN1, einem zentralen Bestandteil retrograder Signalwege. Der hier analysierte P67-Knockout in Mais verursacht hellgrüne Phänotypen, eine drastische Reduktion der plastidären ATPase und Keimlingsletalität, was die essentielle Beteiligung von P67 an den Prozessen der Chloroplastenbiogenese und der Expression der plastidär kodierten ATPase-Untereinheiten vermuten lässt. Mögliche Implikationen eines fehlenden Phänotyps von Mutanten des P67-Orthologs aus Arabidopsis thaliana werden diskutiert. Eine Ausnahmestellung unter den Proteinen des chloroplastidären RNA-Metabolismus nimmt der einzige plastidär kodierte RNA-Reifungsfaktor MatK ein. Die genomische Position des matK-Gens im Intron der trnK-UUU ist in allen grünen Landpflanzen konserviert. MatK ist mit bakteriellen Maturasen verwandt, die spezifisch den Spleißprozess ihres Heimatintrons unterstützen. Dagegen deuten genetische und phylogenetische Studien zusätzliche MatK-Funktionen in trans an. In der vorliegenden Arbeit wird die spezifische Interaktion von MatK mit sieben Gruppe-IIA-Intron enthaltenden Transkripten in vivo gezeigt. Darunter befinden sich vier tRNA-Vorläufer (trnK-UUU mit dem matK-Heimatintron sowie trnV-UAC, trnI-GAU, trnA-UGC) und drei proteinkodierende Vorläufertranskripte (rpl2, rps12, atpF). Die Feinkartierung der MatK-Bindung im trnK-Heimatintron zeigt eine Assoziation mit multiplen Regionen. Organelläre Gruppe-II-Introns gelten als Vorläufer der spleißosomalen Introns. Die Assoziation mit multiplen Gruppe-II-Introns macht MatK somit zu einem interessanten Modell für die Evolution der transaktiven Spleißaktivität im Kern. Analysen der Expression von MatK und seinen Zielen deuten auf ein komplexes Muster möglicher regulativer Interaktionen hin. / Chloroplast gene expression is characterized by posttranscriptional events including RNA cleavage, RNA stability, RNA editing, and RNA splicing. The underlying processing machinery is almost exclusively encoded in the nucleus. PPR proteins (pentatricopeptide repeat) form the biggest protein family among these factors and are major players of the aforementioned posttranscriptional processes. The plastidial protein P67 is a member of a small subgroup of PPR proteins with SMR domain (small MutS-related). Molecular functions of this protein family in organellar nucleic acid metabolism are yet unknown. P67 is a close relative of GUN1, an essential component of the chloroplast to nucleus retrograde signalling pathway. It is shown here that a P67 knockout in maize causes pale green phenotypes, a dramatic reduction in ATPase levels, and seedling lethality. This indicates an essential role of P67 for chloroplast biogenesis and expression of the plastid encoded ATPase. The finding that mutants of the P67-orthologe in Arabidopsis lack a phenotype is discussed against the background of physiological differences between maize and Arabidopsis. A special case among proteins involved in plastid RNA metabolism is MatK - the only plastid encoded RNA maturation factor. The genomic position of the matK gene in the trnK-UUU intron is conserved throughout autotrophic land plants. MatK is related to bacterial maturases - highly specific splice factors supporting splice processes of their respective home introns. There is, however, indirect genetic and phylogenetic evidence that MatK acts also in trans as a common plastidial splice factor serving various group II introns. This study shows that MatK interacts specifically with seven group IIA introns in vivo. Among them are four tRNA precursor transcripts (trnK-UUU including the matK home intron as well as trnV-UAC, trnI-GAU, trnA-UGC) and three protein-coding precursors (rpl2, rps12, atpF). Fine mapping of MatK binding sites within the trnK home intron uncovers protein RNA interactions with diverse intron regions. Organellar introns have been suggested as evolutionary ancestors of nuclear spliceosomal introns. Consequently, association of MatK with multiple group II intron ligands makes the plastidial maturase an attractive model for an early trans-acting nuclear splice activity. Analyses of the expression of MatK and its targets revealed a complex pattern of possible regulatory interactions.
3

PPRs and cpRNPs

Ruwe, Hannes 10 July 2015 (has links)
Die Genexpressionsmaschinerie in Chloroplasten und Mitochondrien und die ihrer prokaryotischen Vorläufer sind konserviert. Innerhalb eines bakteriellen Grundgerüsts entwickelte sich darüber hinaus ein komplexer RNA-Metabolismus. In der vorliegenden Arbeit wird eine neue Klasse kleiner RNAs (15-50nt) mit plastidärem und mitochondrialen Ursprung beschrieben. Diese kurzen RNAs überlappen mit Bindestellen von RNA-bindenden Proteinen, die mRNAs gegen exonukleolytischen Verdau beschützen. Diese stabilisierende Funktion wird vermutlich hauptsächlich von PPR (Pentatricopeptid repeat) Proteinen und verwandten Proteine bewerkstelligt. Die kleinen RNAs repräsentieren dabei minimale nuklease-resistente Bereiche, sogenannte RNA-Bindeprotein footprints. Solche footprints finden sich in fast jedem intergenischen Bereich, der Prozessierung aufweist. Durch transkriptomweite Untersuchungen von kleinen RNAs in Mutanten von RNA-Bindeproteinen konnte für diese eine Reihe von Bindestellen identifiziert werden. Nuklease-resistente kleine RNAs fehlen in entsprechenden Mutanten. Der Vergleich neu identifizierter Ziele einzelner RNA-Bindeproteine führte dabei zu neuen Erkenntnissen über den Mechanismus der RNA-Erkennung durch PPR Proteine. Im Gegensatz zu Plastiden befinden sich kleine RNAs in Mitochondrien überwiegend an den 3‘ Enden von Transkripten, deren Stabilität vermutlich maßgeblich von diesen RNA-Bindeproteinen beeinflusst wird. Für das chloroplastidäre Ribonukleoprotein CP31A konnte gezeigt werden, dass es an der Stabilisierung der ndhF mRNA beteiligt ist. Die Interaktion mit der ndhF mRNA, die eine zentrale Komponente des NDH-Komplexes kodiert, wird dabei über die 3‘ untranslatierte Region vermittelt. Zusätzlich konnte gezeigt werden, dass CP31A die Stabilität einiger antisense Transkripte beeinflusst. Weiterhin wurden zehn neue Cytidin Desaminierungungen durch die Analyse von RNA-Seq Datensätzen in der Modellpflanze Arabidopsis thaliana identifiziert. / Chloroplasts and mitochondria are of endosymbiotic origin. Their basic gene expression machineries are retained from their free-living prokaryotic progenitors. On top of this bacterial scaffold, a number of organelle-specific RNA processing steps evolved. In this thesis, a novel class of organelle-specific short (15-50nt) RNAs is described on a transcriptome-wide scale. The small RNAs are found at binding sites of PPR (Pentatricopeptide repeat) and PPR-like proteins, which protect mRNAs against exonucleolytic decay. The small RNAs represent minimal nuclease resistant RNAs, so called PPR footprints. Small RNAs were identified in almost every intergenic region subjected to intergenic processing. This finding suggests that accumulation of processed transcripts in plastids is mostly due to protection by highly specific RNA-binding proteins. Small RNA sequencing identified a number of nuclease insensitive sites missing in mutants of RNA-binding proteins. Analysis of multiple small RNAs representing target sites of single PPR proteins expands the knowledge of target specificity. In mitochondria, accumulations of small RNAs predicts that at least two thirds of mitochondrial mRNAs are stabilized by RNA-binding proteins binding in their 3’UTR. In sum, small organellar RNAs turned out to be instrumental in elucidating the hitherto enigmatic intercistronic processing of organellar RNAs and allowed novel insights into the function of the dominant family of organellar RNA binding proteins, the PPR proteins. A chloroplast ribonucleoprotein CP31A is shown to be involved in stabilization of an mRNA for a central component of the NDH-complex by interaction with its 3’UTR. In addition, CP31A represents the first factor described that influences the accumulation of chloroplast antisense transcripts. Finally, ten novel plastid C to U RNA-editing sites were identified in the model plant Arabidopsis thaliana, using a novel RNA-Seq based approach.

Page generated in 0.021 seconds