• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 16
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 189
  • 189
  • 38
  • 34
  • 30
  • 25
  • 24
  • 17
  • 17
  • 17
  • 13
  • 13
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Depolarization effects at 3 GHz due to precipitation

Humphries, Robert Gordon January 1974 (has links)
No description available.
122

Statistical studies of radar precipitation patterns.

Zawadzki, Isztar Isaac January 1972 (has links)
No description available.
123

The influence of the ice phase on the simulated chemistry of a rainband /

Andrew, Giles January 1987 (has links)
No description available.
124

Thunderstorm electrification : precipitation versus convection

Williams, Earle Rolfe January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: p. 235-247. / by Earle Rolfe Williams. / Ph.D.
125

Estimation of vertical velocity and its significance in precipitation measurements using sensor fusion approach

Ahammad, Parvez 01 July 2002 (has links)
No description available.
126

An algorithm for measuring rain over oceans using the quikscat radiometer

Susanj, Mladen 01 July 2000 (has links)
No description available.
127

Development of functional relationships between radar and rain gage data using inductive modeling techniques

Unknown Date (has links)
Traditional methods such as distance weighing, correlation and data driven methods have been used in the estimation of missing precipitation data. Also common is the use of radar (NEXRAD) data to provide better spatial distribution of precipitation as well as infilling missing rain gage data. Conventional regression models are often used to capture highly variant nonlinear spatial and temporal relationships between NEXRAD and rain gage data. This study aims to understand and model the relationships between radar (NEXRAD) estimated rainfall data and the data measured by conventional rain gages. The study is also an investigation into the use of emerging computational data modeling (inductive) techniques and mathematical programming formulations to develop new optimal functional approximations. Radar based rainfall data and rain gage data are analyzed to understand the spatio-temporal associations, as well as the effect of changes in the length or availability of data on the models. The upper and lower Kissimmee basins of south Florida form the test-bed to evaluate the proposed and developed approaches and also to check the validity and operational applicability of these functional relationships among NEXRAD and rain gage data for infilling of missing data. / by Delroy Peters. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
128

Evaluation of power function approximation of NEXRAD and rain gauge based precipitation estimates

Unknown Date (has links)
Radar rainfall estimates have become a decision making tool for scientists, engineers and water managers in their tasks for developing hydrologic models, water supply planning, restoration of ecosystems, and flood control. In the present study, the utility of a power function for linking the rain gauge and radar estimates has been assessed. Mean daily rainfall data from 163 rain gauges installed within the South Florida Water Management District network have been used and their records from January 1st, 2002 to October 31st, 2007 analyzed. Results indicate that the power function coefficients and exponents obtained by using a non-linear optimization formulation, show spatial variability mostly affected by type of rainfall events occurring in the dry or wet seasons, and that the linear distance from the radar location to the rain gauge has a significant effect on the computed values of the coefficients and exponents. / by Mario Mayes-Fernandez. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
129

Evaluation of optimal real-time reflectivity-rainfall rate (Z-R) functional relationships

Unknown Date (has links)
Accuracy in estimation of precipitation can be achieved by utilizing the combination of spatial radar reflectivity data (Z) and the high resolution temporal rain gage based rainfall data (R). The study proposes the use of optimization models for optimizing the Z-R coefficients and exponents for different storm types and seasons. Precipitation data based on reflectivity, collected from National Climatic Data Center (NCDC) and rain gage data from Southwest Florida Water Management District (SWFWMD) over same temporal resolutions were analyzed using the Rain-Radar- Retrieval (R3) system developed as a part of the study. Optimization formulations are proposed to obtain optimal coefficients and exponents in the Z-R relationships for different seasons and objective selection of storm-type specific Z-R relationships. Different approaches in selection of rain gage stations and selection of events for optimization are proposed using gradient based solver and genetic algorithms. / Kandarp Pattani. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.\
130

Influences of decadal and multi-decadal oscillations on regional precipitation extremes and characteristics

Unknown Date (has links)
Three major teleconnections, Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), and the Pacific Decadal Oscillation (PDO), in warm and cool phases, effect precipitation in Florida. The effects of the oscillation phases on the precipitation characteristics are analyzed by using long-term daily precipitation data, on different temporal (annual, monthly, and daily) and spatial scales, utilizing numerous indices, and techniques. Long-term extreme precipitation data for 9 different durations is used to examine the effects of the oscillation phases on the rainfall extremes, by employing different parametric and non-parametric statistical tests, along with Depth-Duration- Frequency analysis. Results show that Florida will experience higher rainfall when AMO is in the warm phase, except in the panhandle and south Florida, while PDO cool phase is positively correlated with precipitation, except for the southern part of the peninsula. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.

Page generated in 0.0308 seconds