• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL STUDY OF FIRE BEHAVIOR BETWEEN TWO INCLINED PANELS

Li, Qian 28 August 2019 (has links)
No description available.
2

Multi-Phase Smart Converter for PV System

Cao, Zhongsheng 02 October 2014 (has links)
Recent research and industrial accomplishment has revealed the advantages of cascaded smart converter PV system over traditional centralized and string PV system. However, even by adopting the cascaded smart converter, it is not always possible to track maximum power point (MPP) for all the panels under heavy shading condition, and a central converter is still required to track the peak power point of PV array. Based on the analysis of system configurations for smart converter PV system, an alternative PV system configuration is introduced which can extract peak power from all the panels under different mismatch condition and connect PV array to 380V DC bus without central converter. Based on this alternative PV system configuration, a multi-phase smart converter with single controller is proposed as a low cost panel-level MPPT solution. This proposal can largely reduce cost by saving MPPT controllers, current and voltage sensors without sacrificing energy production. The effectiveness of the proposal has been verified by both simulation and experiment results. / Master of Science
3

Towards holistic net-zero : Ecological and energy-efficientBuilding in Utsikten

Wso, Dana, Aliramaei, Saman January 2022 (has links)
Global warming is one of the biggest challenges today, and the construction sector is one of the main sectors contributing to climate change. Due to this, using environmentally friendly materials in construction is an important decision against global warming. This thesis aims to evaluate the most important building envelope components to achieve a house in Sweden to become near net-zero energy building (ZEB). Due to this, different ecological insulation materials, and window types were presented, analyzed, and evaluated to choose the most energy-efficient alternatives for the Utsikten village project. In terms of reduction of electricity bought, renewable energy on-site photovoltaic (PV) and ground source heat pump systems are used. In this study, numerical simulations for building envelope components such as windows, ground floor, external walls, and roofs were performed to evaluate the thermal performance of the components by IDA ICE and UBAKUS. The primary energy for different building cases has been calculated to evaluate thermal performance and energy classification levels to identify the most environmentally friendly solutions. There is a variation of ecological material for insulation that can be used for different parts of the building envelope. In general, ecological insulation material has less life expectancy but a much lower environmental impact compared to minerals and synthetic materials. However, there are also some limitations to using some ecological insulation materials in the ground construction. This study also shows how several pane glasses, gap dimensions, gas fill gap, and Low-E coating impact the energy performance of the windows and the building. Simple solar PV panel simulation shows that the maximum electricity production on a site is very related to orientation, tilt, and sun exposure. The result of this master thesis shows that it is possible to reach near-net-zero energy building by enhancing building envelope components and using renewable energy sources for heating, cooling, and electricity production.
4

Komplexní provozní diagnostika FVE-T14 - opatření pro optimalizaci provozu / Operational Diagnostics of PV plant -T14 - Operation Optimizing

Kroutil, Roman January 2016 (has links)
The aim of the Thesis is theoretical clarification of the issues of photovoltaic power plants, their diagnostics, inspection and performance measurement, including negative impacts on their operation and subsequent application of theoretical knowledge during practical inspection and diagnostics of PV power plants. In its introductory part, the Thesis deals with design, manufacturing and development of PV cells and panels and describes other necessary elements and components, including their use in individual types of photovoltaic systems. Another part describes electric parameters of PV cells and panels, especially the parameters that can be found out by measurement of V-A characteristics and also the parameters affecting the shape of the V-A characteristics. The third part is focused on failures of photovoltaic systems, which include various defects of photovoltaic cells and panels, it also provides for adverse factors affecting operation of the entire system, associated not only with weather influences but also with the actual design of the photovoltaic system. The fourth part deals with possibilities of increasing the cost-effectiveness of electricity generation by PV power plants on the basis of practical experience of their operators. The subsequent part determines, on the basis of technical standards, procedures for PV power plant inspections, the procedures for measurement and diagnostics of PV power plants and also other prerequisites connected with inspections and measurements. This part includes also a description of requirements for measuring devices, most frequent measurement errors, adverse impacts affecting measurements and methods of assessment of the data measured. The last part of the Thesis is practical. At first it deals with verification of the impact of defects of PV modules on the shape of their V-A characteristics, then with execution of inspections and diagnostics of a particular PV power plant, evaluation of the data identified and measured, as well as with a proposal of optimisation measures to increase cost-efficiency of the operation of that particular PV power plant.
5

Design, Fabrication and Testing of a Novel Dual-Axis Automatic Solar Tracker System Using a Fresnel-Lens Solar Concentrator

Almara, Laura Mabel 08 1900 (has links)
This thesis project investigates, analyzes, designs, simulates, constructs and tests a dual-axis solar tracker system to track the sun and concentrates the heat of the sunlight, using a Fresnel lens, into a small area, which is above of an evaporator, to increase the temperature of the seawater to convert it into freshwater. The dual-axis solar tracker was designed with the main objectives that the structure was portable, dismountable, lightweight, low cost, corrosion resistant, wires inside pipes, accurate, small size, follow the sun automatically, off-grid (electrical), use green energy (solar powered), and has an empty area right below of the lens. First, a 500 mm diameter flat Fresnel lens was selected and simulated based on an algorithmic method achieved by a previous PhD student at UNT using MATLAB®, to give the optimization lens dimensions. The lens profile was drawn with AutoCAD®, then output profile lens was simulated in COMSOL Multiphysics®. The objective was to provide the high efficiency, optimum and high precision of the focal rays and heat to the receiver of the evaporator. A novel dual-axis solar tracker system was then designed that is portable, dismountable, lightweight and corrosion resistant. The solar tracker tracks the sun in two axis of rotation automatically during the day time, maximizing the angles of inclination on each axis. After testing computer simulations, the dual-axis solar tracker system was constructed and tested. Last, a detailed cost analysis was performed of the entire project. The outcome of this work can be applied for desalination seawater purposes or other any Fresnel lens application that require a focal high temperature directed by dual-axis solar tracker system.

Page generated in 0.0382 seconds